The Codebase for Causal Distillation for Language Models.

Overview

Python 3.7 License CC BY-NC

Causal Distillation for Language Models

Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D. Goodman

The is an implementation of our preprint Causal Distillation for Language Models. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal computation process of the teacher through interchange intervention training (IIT).

We fork our main codebase from the Huggingface Distillation Interface.

Release Notes

12/02/2021 Our paper on Interchange Intervention Training (IIT) is released! Read this more formal definition of the method.
12/06/2021 Released the causal distillation codebase with the preprint.
12/06/2021 Released evaluation results on distilled tiny-BERT (3 layers) with the Wiki-Text 103M dataset.
⬜️ Released evaluation results on causal-distilled tiny-BERT (3 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released evaluation results on causal-distilled BERT (6 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released more ablation studies.
⬜️ Released causal-distilled tiny-BERT (3 layers) model files.
⬜️ Released causal-distilled BERT (6 layers) model files.

If you experience any issues or have suggestions, please contact me either thourgh the issues page or at [email protected].

Benchmark Results

Here are the results on the dev sets of GLUE:

Model Average-score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
DistilBERT (3 layers) 67.81 22.8 71.6 78.2 82.1 84.3 55.4 86.5 56.7 24.2
CausalBERT (3 layers) 69.71 25.0 72.9 78.6 83.1 84.9 55.4 86.9 66.5 21.5

1 Average-score computed without WNLI.

Main Contents

Citation

If you use this repository, please cite the following two papers: paper for interchange intervention training, and paper for the our distillation method.

  @article{geiger-etal-2021-iit,
        title={Inducing Causal Structure for Interpretable Neural Networks}, 
        author={Geiger, Atticus and Wu, Zhengxuan and Lu, Hanson and Rozner, Josh and Kreiss, Elisa and Icard, Thomas and Goodman, Noah D. and Potts, Christopher},
        year={2021},
        eprint={2112.00826},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }

  @article{wu-etal-2021-distill,
        title={Causal Distillation for Language Models}, 
        author={Wu, Zhengxuan and Geiger, Atticus and Rozner, Josh and Kreiss, Elisa and Lu, Hanson and Icard, Thomas and Potts, Christopher and Goodman, Noah D.},
        year={2021},
        eprint={2112.02505},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
  }

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch Version: 1.9.0
  • Transfermers Version: 4.11.3
  • Datasets Version: Version: 1.8.0
  • We have performed experiments on Titan V GPU. We assume 12GB of GPU memory (more memory can expedite training).
  • Since we build our codebase off the Huggingface Distillation Interface, please review their doc for requirements.

Dataset

Following the Huggingface Distillation Interface, we need to pre-process the datasets before we do distillation. You can refer to their repo for details. We adapt their pre-processing scripts, and update with a few improvements. For example, we can now binarize datasets from the Dataset Hub from huggingface directly.

# preprocessing from disk
python script/binarized_data.py \
--file_path ../../bert-mid-tuning/data-files/wikitext-15M \
--split train \
--field_name text \
--max_parsing_example 1000 \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file ./data/binarized_text

# preprocessing from huggingface.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext+bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

# helper scripts to combine two binarized data files
python scripts/data_combinator.py \
--file_path_left ./bookcorpus-dataset/binarized_text.train.bert-base-uncased.pickle \
--file_path_right ./wikitext-dataset/binarized_text.train.bert-base-uncased.pickle \
--split train \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text

# multiprocessing preprocessor.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/ \
--fast_process \
--preprocessing_num_workers 48

After you get the datasets ready, you need to generate token counts as well.

python scripts/token_counts.py \
--data_file data/binarized_text.train.bert-base-uncased.pickle \
--token_counts_dump data/binarized_text.train.token_counts.bert-base-uncased.pickle \
--vocab_size 30522

Distillation

Before training, we recommand you to initialize your student model with weights extracted from the teacher model.

python scripts/extract_distilbert.py \
--model_type bert \
--model_name bert-base-uncased \
--dump_checkpoint ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--num_layers 3

Now, here is an example for you to distill with our causal distillation objective or without,

CUDA_VISIBLE_DEVICES=9,4 python causal_train.py \
--force \
--n_gpu 2 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.25 --alpha_mlm 0.25 --alpha_cos 0.25 --alpha_clm 0.0 --alpha_causal 0.25 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 50 \
--n_epoch 3 \
--batch_size 5

CUDA_VISIBLE_DEVICES=0,1,2,3 python causal_train.py \
--force \
--n_gpu 4 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --alpha_causal 0.00 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 124 \
--n_epoch 6 \
--batch_size 4

Note that you can simply turn our causal distillation objective on/off through setting the arguments.

Evaluation

After you get your distilled models, you need to fine-tune them and evaluate them with downstream tasks. We provide you all the scripts you need to run.

MLM Evaluation

CUDA_VISIBLE_DEVICES=5 python run_mlm.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-15M_seed_42_mlm_True_ce_0.25_mlm_0.25_cos_0.25_causal_0.25_nm_single_multilayer/ \
--dataset_dir ../../bert-mid-tuning/data-files/wikitext-15M/ \
--tokenizer_name bert-base-uncased \
--do_eval \
--output_dir /tmp/test-mlm \
--cache_dir ./distill_cache/

GLUE Evaluation

CUDA_VISIBLE_DEVICES=5,7,8,9 python run_glue.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle/ \
--tokenizer_name bert-base-uncased \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir ./results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

CoNLL Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_ner.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name conll2003 \
--do_train \
--do_eval \
--output_dir ./ner_results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

SQuAD Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_qa.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--save_total_limit 1 \
--output_dir ./qa_results/
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022