Weakly Supervised End-to-End Learning (NeurIPS 2021)

Overview

WeaSEL: Weakly Supervised End-to-end Learning

Python PyTorch Lightning Config: hydra license

This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 2021), that allows you to train your favorite neural network for weakly-supervised classification1

  • only with multiple labeling functions (LFs)2, i.e. without any labeled training data!
  • in an end-to-end manner, i.e. directly train and evaluate your neural net (end-model from here on), there's no need to train a separate label model any more as in Snorkel & co,
  • with better test set performance and enhanced robustness against correlated or inaccurate LFs than prior methods like Snorkel

1 This includes learning from crowdsourced labels or annotations!
2 LFs are labeling heuristics, that output noisy labels for (subsets of) the training data (e.g. crowdworkers or keyword detectors).

Credits

Getting Started

This library assumes familiarity with (multi-source) weak supervision, if that's not the case you may want to first learn its basics in e.g. this overview slides from Stanford or this Snorkel tutorial.

That being said, have a look at our examples and the notebooks therein showing you how to use Weasel for your own dataset, LF set, or end-model. E.g.:

Reproducibility

Please have a look at the research code branch, which operates on pure PyTorch.

Installation

1. New environment (recommended, but optional)
conda create --name weasel python=3.7  # or other python version >=3.7
conda activate weasel  
2a: From source
python -m pip install git+https://github.com/autonlab/weasel#egg=weasel[all]
2b: From source, editable install
git clone https://github.com/autonlab/weasel.git
cd weasel
pip install -e .[all]

Minimal dependencies

Minimal dependencies, in particular not using Hydra, can be installed with

python -m pip install git+https://github.com/autonlab/weasel

The needed environment corresponds to conda env create -f env_gpu_minimal.yml.

If you choose to use this variant, you won't be able to run some of the examples: You may want to have a look at this notebook that walks you through how to use Weasel without Hydra as the config manager.

Note: Weasel is under active development, some uncovered edge cases might exist, and any feedback is very welcomed!

Apply WeaSEL to your own problem

Configuration with Hydra

Optional: This template config will help you get started with your own application, an analogous config is used in this tutorial script that you may want to check out.

Pre-defined or custom downstream models & Baselines

Please have a look at the detailed instructions in this Readme.

Using your own dataset and/or labeling heuristics

Please have a look at the detailed instructions in this Readme.

Citation

@article{cachay2021endtoend,
  author={R{\"u}hling Cachay, Salva and Boecking, Benedikt and Dubrawski, Artur},
  journal={Advances in Neural Information Processing Systems}, 
  title={End-to-End Weak Supervision},
  year={2021}
}
Owner
Auton Lab, Carnegie Mellon University
Auton Lab, Carnegie Mellon University
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022