Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Related tags

Deep LearningDDU
Overview

Deep Deterministic Uncertainty

arXiv Pytorch 1.8.1 License: MIT

This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty.

If the code or the paper has been useful in your research, please add a citation to our work:

@article{mukhoti2021deterministic,
  title={Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty},
  author={Mukhoti, Jishnu and Kirsch, Andreas and van Amersfoort, Joost and Torr, Philip HS and Gal, Yarin},
  journal={arXiv preprint arXiv:2102.11582},
  year={2021}
}

Dependencies

The code is based on PyTorch and requires a few further dependencies, listed in environment.yml. It should work with newer versions as well.

OoD Detection

Datasets

For OoD detection, you can train on CIFAR-10/100. You can also train on Dirty-MNIST by downloading Ambiguous-MNIST (amnist_labels.pt and amnist_samples.pt) from here and using the following training instructions.

Training

In order to train a model for the OoD detection task, use the train.py script. Following are the main parameters for training:

--seed: seed for initialization
--dataset: dataset used for training (cifar10/cifar100/dirty_mnist)
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/ (if training on dirty-mnist)
--model: model to train (wide_resnet/vgg16/resnet18/resnet50/lenet)
-sn: whether to use spectral normalization (available for wide_resnet, vgg16 and resnets)
--coeff: Coefficient for spectral normalization
-mod: whether to use architectural modifications (leaky ReLU + average pooling in skip connections)
--save-path: path/for/saving/model/

As an example, in order to train a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10, use the following:

python train.py \
       --seed 1 \
       --dataset cifar10 \
       --model wide_resnet \
       -sn -mod \
       --coeff 3.0 

Similarly, to train a ResNet-18 with spectral normalization on Dirty-MNIST, use:

python train.py \
       --seed 1 \
       --dataset dirty-mnist \
       --dataset-root /home/user/amnist/ \
       --model resnet18 \
       -sn \
       --coeff 3.0

Evaluation

To evaluate trained models, use evaluate.py. This script can evaluate and aggregate results over multiple experimental runs. For example, if the pretrained models are stored in a directory path /home/user/models, store them using the following directory structure:

models
├── Run1
│   └── wide_resnet_1_350.model
├── Run2
│   └── wide_resnet_2_350.model
├── Run3
│   └── wide_resnet_3_350.model
├── Run4
│   └── wide_resnet_4_350.model
└── Run5
    └── wide_resnet_5_350.model

For an ensemble of models, store the models using the following directory structure:

model_ensemble
├── Run1
│   ├── wide_resnet_1_350.model
│   ├── wide_resnet_2_350.model
│   ├── wide_resnet_3_350.model
│   ├── wide_resnet_4_350.model
│   └── wide_resnet_5_350.model
├── Run2
│   ├── wide_resnet_10_350.model
│   ├── wide_resnet_6_350.model
│   ├── wide_resnet_7_350.model
│   ├── wide_resnet_8_350.model
│   └── wide_resnet_9_350.model
├── Run3
│   ├── wide_resnet_11_350.model
│   ├── wide_resnet_12_350.model
│   ├── wide_resnet_13_350.model
│   ├── wide_resnet_14_350.model
│   └── wide_resnet_15_350.model
├── Run4
│   ├── wide_resnet_16_350.model
│   ├── wide_resnet_17_350.model
│   ├── wide_resnet_18_350.model
│   ├── wide_resnet_19_350.model
│   └── wide_resnet_20_350.model
└── Run5
    ├── wide_resnet_21_350.model
    ├── wide_resnet_22_350.model
    ├── wide_resnet_23_350.model
    ├── wide_resnet_24_350.model
    └── wide_resnet_25_350.model

Following are the main parameters for evaluation:

--seed: seed used for initializing the first trained model
--dataset: dataset used for training (cifar10/cifar100)
--ood_dataset: OoD dataset to compute AUROC
--load-path: /path/to/pretrained/models/
--model: model architecture to load (wide_resnet/vgg16)
--runs: number of experimental runs
-sn: whether the model was trained using spectral normalization
--coeff: Coefficient for spectral normalization
-mod: whether the model was trained using architectural modifications
--ensemble: number of models in the ensemble
--model-type: type of model to load for evaluation (softmax/ensemble/gmm)

As an example, in order to evaluate a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10 with OoD dataset as SVHN, use the following:

python evaluate.py \
       --seed 1 \
       --dataset cifar10 \
       --ood_dataset svhn \
       --load-path /path/to/pretrained/models/ \
       --model wide_resnet \
       --runs 5 \
       -sn -mod \
       --coeff 3.0 \
       --model-type softmax

Similarly, to evaluate the above model using feature density, set --model-type gmm. The evaluation script assumes that the seeds of models trained in consecutive runs differ by 1. The script stores the results in a json file with the following structure:

{
    "mean": {
        "accuracy": mean accuracy,
        "ece": mean ECE,
        "m1_auroc": mean AUROC using log density / MI for ensembles,
        "m1_auprc": mean AUPRC using log density / MI for ensembles,
        "m2_auroc": mean AUROC using entropy / PE for ensembles,
        "m2_auprc": mean AUPRC using entropy / PE for ensembles,
        "t_ece": mean ECE (post temp scaling)
        "t_m1_auroc": mean AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": mean AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": mean AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": mean AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "std": {
        "accuracy": std error accuracy,
        "ece": std error ECE,
        "m1_auroc": std error AUROC using log density / MI for ensembles,
        "m1_auprc": std error AUPRC using log density / MI for ensembles,
        "m2_auroc": std error AUROC using entropy / PE for ensembles,
        "m2_auprc": std error AUPRC using entropy / PE for ensembles,
        "t_ece": std error ECE (post temp scaling),
        "t_m1_auroc": std error AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": std error AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": std error AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": std error AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "values": {
        "accuracy": accuracy list,
        "ece": ece list,
        "m1_auroc": AUROC list using log density / MI for ensembles,
        "m2_auroc": AUROC list using entropy / PE for ensembles,
        "t_ece": ece list (post temp scaling),
        "t_m1_auroc": AUROC list using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": AUPRC list using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": AUROC list using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": AUPRC list using entropy / PE for ensembles (post temp scaling)
    },
    "info": {dictionary of args}
}

Results

Dirty-MNIST

To visualise DDU's performance on Dirty-MNIST (i.e., Fig. 1 of the paper), use fig_1_plot.ipynb. The notebook requires a pretrained LeNet, VGG-16 and ResNet-18 with spectral normalization trained on Dirty-MNIST and visualises the softmax entropy and feature density for Dirty-MNIST (iD) samples vs Fashion-MNIST (OoD) samples. The notebook also visualises the softmax entropies of MNIST vs Ambiguous-MNIST samples for the ResNet-18+SN model (Fig. 2 of the paper). The following figure shows the output of the notebook for the LeNet, VGG-16 and ResNet18+SN model we trained on Dirty-MNIST.

CIFAR-10 vs SVHN

The following table presents results for a Wide-ResNet-28-10 architecture trained on CIFAR-10 with SVHN as the OoD dataset. For the full set of results, refer to the paper.

Method Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy Test ECE AUROC
Softmax Softmax Entropy Softmax Entropy 95.98+-0.02 0.85+-0.02 94.44+-0.43
Energy-based Softmax Entropy Softmax Density 95.98+-0.02 0.85+-0.02 94.56+-0.51
5-Ensemble Predictive Entropy Predictive Entropy 96.59+-0.02 0.76+-0.03 97.73+-0.31
DDU (ours) Softmax Entropy GMM Density 95.97+-0.03 0.85+-0.04 98.09+-0.10

Active Learning

To run active learning experiments, use active_learning_script.py. You can run active learning experiments on both MNIST as well as Dirty-MNIST. When running with Dirty-MNIST, you will need to provide a pretrained model on Dirty-MNIST to distinguish between clean MNIST and Ambiguous-MNIST samples. The following are the main command line arguments for active_learning_script.py.

--seed: seed used for initializing the first model (later experimental runs will have seeds incremented by 1)
--model: model architecture to train (resnet18)
-ambiguous: whether to use ambiguous MNIST during training. If this is set to True, the models will be trained on Dirty-MNIST, otherwise they will train on MNIST.
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/
--trained-model: model architecture of pretrained model to distinguish clean and ambiguous MNIST samples
-tsn: if pretrained model has been trained using spectral normalization
--tcoeff: coefficient of spectral normalization used on pretrained model
-tmod: if pretrained model has been trained using architectural modifications (leaky ReLU and average pooling on skip connections)
--saved-model-path: /path/to/saved/pretrained/model/
--saved-model-name: name of the saved pretrained model file
--threshold: Threshold of softmax entropy to decide if a sample is ambiguous (samples having higher softmax entropy than threshold will be considered ambiguous)
--subsample: number of clean MNIST samples to use to subsample clean MNIST
-sn: whether to use spectral normalization during training
--coeff: coefficient of spectral normalization during training
-mod: whether to use architectural modifications (leaky ReLU and average pooling on skip connections) during training
--al-type: type of active learning acquisition model (softmax/ensemble/gmm)
-mi: whether to use mutual information for ensemble al-type
--num-initial-samples: number of initial samples in the training set
--max-training-samples: maximum number of training samples
--acquisition-batch-size: batch size for each acquisition step

As an example, to run the active learning experiment on MNIST using the DDU method, use:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       --al-type gmm

Similarly, to run the active learning experiment on Dirty-MNIST using the DDU baseline, with a pretrained ResNet-18 with SN to distinguish clean and ambiguous MNIST samples, use the following:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       -ambiguous \
       --dataset-root /home/user/amnist/ \
       --trained-model resnet18 \
       -tsn \
       --saved-model-path /path/to/pretrained/model \
       --saved-model-name resnet18_sn_3.0_1_350.model \
       --threshold 1.0 \
       --subsample 1000 \
       --al-type gmm

Results

The active learning script stores all results in json files. The MNIST test set accuracy is stored in a json file with the following structure:

{
    "experiment run": list of MNIST test set accuracies one per acquisition step
}

When using ambiguous samples in the pool set, the script also stores the fraction of ambiguous samples acquired in each step in the following json:

{
    "experiment run": list of fractions of ambiguous samples in the acquired training set
}

Visualisation

To visualise results from the above json files, use the al_plot.ipynb notebook. The following diagram shows the performance of different baselines (softmax, ensemble PE, ensemble MI and DDU) on MNIST and Dirty-MNIST.

Questions

For any questions, please feel free to raise an issue or email us directly. Our emails can be found on the paper.

Owner
Jishnu Mukhoti
Graduate Student in Computer Science
Jishnu Mukhoti
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023