Video Frame Interpolation with Transformer (CVPR2022)

Overview

VFIformer

Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer

Dependencies

  • python >= 3.8
  • pytorch >= 1.8.0
  • torchvision >= 0.9.0

Prepare Dataset

  1. Vimeo90K Triplet dataset
  2. MiddleBury Other dataset
  3. UCF101 dataset
  4. SNU-FILM dataset

To train on the Vimeo90K, we have to first compute the ground-truth flows between frames using Lite-flownet, you can clone the Lite-flownet repo and put compute_flow_vimeo.py we provide under its main directory and run (remember to change the data path):

python compute_flow_vimeo.py

Get Started

  1. Clone this repo.
    git clone https://github.com/Jia-Research-Lab/VFIformer.git
    cd VFIformer
    
  2. Modify the argument --data_root in train.py according to your Vimeo90K path.

Evaluation

  1. Download the pre-trained models and place them into the pretrained_models/ folder.

    • Pre-trained models can be downloaded from Google Drive
      • pretrained_VFIformer: the final model in the main paper
      • pretrained_VFIformerSmall: the smaller version of the model mentioned in the supplementary file
  2. Test on the Vimeo90K testing set.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    

    If you want to test with the smaller model, please change the --net_name and --resume accordingly:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformerSmall --resume ./pretrained_models/pretrained_VFIformerSmall/net_220.pth --save_result
    

    The testing results are saved in the test_results/ folder. If you do not want to save the image results, you can remove the --save_result argument in the commands optionally.

  3. Test on the MiddleBury dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your MiddleBury path] --testset MiddleburyDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  4. Test on the UCF101 dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your UCF101 path] --testset UFC101Dataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  5. Test on the SNU-FILM dataset.

    Modify the argument --data_root according to your data path. Choose the motion level and modify the argument --test_level accordingly, run:

    python FILM_test.py --data_root [your SNU-FILM path] --test_level [easy/medium/hard/extreme] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Training

  1. First train the flow estimator. (Note that skipping this step will not cause a significant impact on performance. We keep this step here only to be consistent with our paper.)
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4174 train.py --launcher pytorch --gpu_ids 0,1,2,3 \
            --loss_flow --use_tb_logger --batch_size 48 --net_name IFNet --name train_IFNet --max_iter 300 --crop_size 192 --save_epoch_freq 5
    
  2. Then train the whole framework.
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformer --name train_VFIformer --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    
  3. To train the smaller version, run:
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformerSmall --name train_VFIformerSmall --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    

Test on your own data

  1. Modify the arguments --img0_path and --img1_path according to your data path, run:
    python demo.py --img0_path [your img0 path] --img1_path [your img1 path] --save_folder [your save path] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Acknowledgement

We borrow some codes from RIFE and SwinIR. We thank the authors for their great work.

Citation

Please consider citing our paper in your publications if it is useful for your research.

@inproceedings{lu2022vfiformer,
    title={Video Frame Interpolation with Transformer},
    author={Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022},
}

Contact

[email protected]

Owner
DV Lab
Deep Vision Lab
DV Lab
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Vikrant Deshpande 1 Nov 17, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022