Tree Nested PyTorch Tensor Lib

Overview

DI-treetensor

PyPI PyPI - Python Version Loc Comments

Docs Deploy Code Test Badge Creation Package Release codecov

GitHub stars GitHub forks GitHub commit activity GitHub issues GitHub pulls Contributors GitHub license

treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors.

Almost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.

Installation

You can simply install it with pip command line from the official PyPI site.

pip install di-treetensor

For more information about installation, you can refer to Installation.

Documentation

The detailed documentation are hosted on https://opendilab.github.io/DI-treetensor.

Only english version is provided now, the chinese documentation is still under development.

Quick Start

You can easily create a tree value object based on FastTreeValue.

import builtins
import os
from functools import partial

import treetensor.torch as torch

print = partial(builtins.print, sep=os.linesep)

if __name__ == '__main__':
    # create a tree tensor
    t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})
    print(t)
    print(torch.randn(4, 5))  # create a normal tensor
    print()

    # structure of tree
    print('Structure of tree')
    print('t.a:', t.a)  # t.a is a native tensor
    print('t.b:', t.b)  # t.b is a tree tensor
    print('t.b.x', t.b.x)  # t.b.x is a native tensor
    print()

    # math calculations
    print('Math calculation')
    print('t ** 2:', t ** 2)
    print('torch.sin(t).cos()', torch.sin(t).cos())
    print()

    # backward calculation
    print('Backward calculation')
    t.requires_grad_(True)
    t.std().arctan().backward()
    print('grad of t:', t.grad)
    print()

    # native operation
    # all the ops can be used as the original usage of `torch`
    print('Native operation')
    print('torch.sin(t.a)', torch.sin(t.a))  # sin of native tensor

The result should be

<Tensor 0x7f0dae602760>
├── a --> tensor([[-1.2672, -1.5817, -0.3141],
│                 [ 1.8107, -0.1023,  0.0940]])
└── b --> <Tensor 0x7f0dae602820>
    └── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                      [ 1.5956,  0.8825, -0.5702, -0.2247],
                      [ 0.9235,  0.4538,  0.8775, -0.2642]])

tensor([[-0.9559,  0.7684,  0.2682, -0.6419,  0.8637],
        [ 0.9526,  0.2927, -0.0591,  1.2804, -0.2455],
        [ 0.4699, -0.9998,  0.6324, -0.6885,  1.1488],
        [ 0.8920,  0.4401, -0.7785,  0.5931,  0.0435]])

Structure of tree
t.a:
tensor([[-1.2672, -1.5817, -0.3141],
        [ 1.8107, -0.1023,  0.0940]])
t.b:
<Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                  [ 1.5956,  0.8825, -0.5702, -0.2247],
                  [ 0.9235,  0.4538,  0.8775, -0.2642]])

t.b.x
tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
        [ 1.5956,  0.8825, -0.5702, -0.2247],
        [ 0.9235,  0.4538,  0.8775, -0.2642]])

Math calculation
t ** 2:
<Tensor 0x7f0dae602eb0>
├── a --> tensor([[1.6057, 2.5018, 0.0986],
│                 [3.2786, 0.0105, 0.0088]])
└── b --> <Tensor 0x7f0dae60c040>
    └── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],
                      [2.5458, 0.7789, 0.3252, 0.0505],
                      [0.8528, 0.2059, 0.7699, 0.0698]])

torch.sin(t).cos()
<Tensor 0x7f0dae621910>
├── a --> tensor([[0.5782, 0.5404, 0.9527],
│                 [0.5642, 0.9948, 0.9956]])
└── b --> <Tensor 0x7f0dae6216a0>
    └── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],
                      [0.5406, 0.7163, 0.8578, 0.9753],
                      [0.6983, 0.9054, 0.7185, 0.9661]])


Backward calculation
grad of t:
<Tensor 0x7f0dae60c400>
├── a --> tensor([[-0.0435, -0.0535, -0.0131],
│                 [ 0.0545, -0.0064, -0.0002]])
└── b --> <Tensor 0x7f0dae60cbe0>
    └── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],
                      [ 0.0476,  0.0249, -0.0213, -0.0103],
                      [ 0.0262,  0.0113,  0.0248, -0.0116]])


Native operation
torch.sin(t.a)
tensor([[-0.9543, -0.9999, -0.3089],
        [ 0.9714, -0.1021,  0.0939]], grad_fn=<SinBackward>)

For more quick start explanation and further usage, take a look at:

Extension

If you need to translate treevalue object to runnable source code, you may use the potc-treevalue plugin with the installation command below

pip install DI-treetensor[potc]

In potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph

potc_system

For more information, you can refer to

Contribution

We appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.

And users can join our slack communication channel, or contact the core developer HansBug for more detailed discussion.

License

DI-treetensor released under the Apache 2.0 license.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

 (Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Code to reproduce the results in the paper
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

Comments
  • PyTorch OP List(P0)

    PyTorch OP List(P0)

    reference: https://pytorch.org/docs/1.8.0/torch.html

    common

    • [x] numel
    • [x] cpu
    • [x] cuda
    • [x] to

    Creation Ops

    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.randint_like
    • [x] torch.ones_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] torch.full
    • [x] torch.empty

    Indexing, Slicing, Joining, Mutating Ops

    • [x] cat
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [x] reshape
    • [ ] scatter
    • [x] split
    • [x] squeeze
    • [x] stack
    • [ ] tile
    • [ ] unbind
    • [x] unsqueeze
    • [x] where

    Math Ops

    Pointwise Ops
    • [x] add
    • [x] sub
    • [x] mul
    • [x] div
    • [x] pow
    • [x] neg
    • [x] abs
    • [x] sign
    • [x] floor
    • [x] ceil
    • [x] round
    • [x] sigmoid
    • [x] clamp
    • [x] exp
    • [x] exp2
    • [x] sqrt
    • [x] log
    • [x] log10
    • [x] log2
    Reduction Ops
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [ ] logsumexp
    • [x] mean
    • [ ] median
    • [x] norm
    • [ ] prod
    • [x] std
    • [x] sum
    • [ ] unique
    Comparison Ops
    • [ ] argsort
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [x] le
    • [x] lt
    • [x] ne
    • [ ] sort
    • [ ] topk
    Other Ops
    • [ ] cdist
    • [x] clone
    • [ ] flip

    BLAS and LAPACK Ops

    • [ ] addbmm
    • [ ] addmm
    • [ ] bmm
    • [x] dot
    • [x] matmul
    • [x] mm
    enhancement 
    opened by PaParaZz1 3
  • PyTorch OP Doc List

    PyTorch OP Doc List

    P0

    • [x] cpu
    • [x] cuda
    • [x] to
    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.ones_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] cat
    • [x] reshape
    • [x] split
    • [x] squeeze
    • [x] stack
    • [x] unsqueeze
    • [x] where
    • [x] abs
    • [x] add
    • [x] clamp
    • [x] div
    • [x] exp
    • [x] log
    • [x] sqrt
    • [x] sub
    • [x] sigmoid
    • [x] pow
    • [x] mul
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [x] mean
    • [x] std
    • [x] sum
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] le
    • [x] lt
    • [x] ne
    • [x] clone
    • [x] dot
    • [x] matmul
    • [x] mm

    P1

    • [x] numel
    • [x] torch.randint_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.full
    • [x] torch.empty
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [ ] scatter
    • [ ] tile
    • [ ] unbind
    • [x] ceil
    • [x] exp2
    • [x] floor
    • [x] log10
    • [x] log2
    • [x] neg
    • [x] round
    • [x] sign
    • [ ] bmm

    P2

    • [ ] logsumexp
    • [ ] median
    • [x] norm
    • [ ] prod
    • [ ] unique
    • [ ] argsort
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [ ] sort
    • [ ] topk
    • [ ] cdist
    • [ ] flip
    • [ ] addbmm
    • [ ] addmm
    opened by PaParaZz1 2
  • dev(hansbug): add stream support for paralleling the calculations in tree

    dev(hansbug): add stream support for paralleling the calculations in tree

    Here is an example:

    import time
    
    import numpy as np
    import torch
    
    import treetensor.torch as ttorch
    
    N, M, T = 200, 2, 50
    S1, S2, S3 = 512, 1024, 2048
    
    
    def test_min():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N // M)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N // M)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_native():
        a = {f'a{i}': torch.randn(S1, S2, device='cuda') for i in range(N)}
        b = {f'a{i}': torch.randn(S2, S3, device='cuda') for i in range(N)}
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            for key in a.keys():
                _ = torch.matmul(a[key], b[key])
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_linear():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_stream():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        ttorch.stream(M)
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def warmup():
        # warm up
        a = torch.randn(1024, 1024).cuda()
        b = torch.randn(1024, 1024).cuda()
        for _ in range(20):
            c = torch.matmul(a, b)
    
    
    if __name__ == '__main__':
        warmup()
        test_min()
        test_native()
        test_linear()
        test_stream()
    
    

    不过讲真,这个stream实际效果挺脆弱的,非常看tensor尺寸,大了小了都不行,GPU性能不够也不行,一弄不好还容易负优化,总之挺难伺候的。这部分如果想实用化的话得再研究研究。

    enhancement 
    opened by HansBug 1
  • Failure when try to convert between numpy and torch on Windows Python3.10

    Failure when try to convert between numpy and torch on Windows Python3.10

    See here: https://github.com/opendilab/DI-treetensor/runs/7820313811?check_suite_focus=true

    The bug is like

        @method_treelize(return_type=_get_tensor_class)
        def tensor(self: numpy.ndarray, *args, **kwargs):
    >       tensor_: torch.Tensor = torch.from_numpy(self)
    E       RuntimeError: Numpy is not available
    

    The only way I found to 'solve' this is to downgrade python to version3.9 to lower. So these tests will be skipped temporarily.

    bug 
    opened by HansBug 0
Releases(v0.4.0)
  • v0.4.0(Aug 14, 2022)

    What's Changed

    • dev(hansbug): remove support for py3.6 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/12
    • pytorch upgrade to 1.12 by @zjowowen in https://github.com/opendilab/DI-treetensor/pull/11
    • dev(hansbug): add test for torch1.12.0 and python3.10 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/13
    • dev(hansbug): add stream support for paralleling the calculations in tree by @HansBug in https://github.com/opendilab/DI-treetensor/pull/10

    New Contributors

    • @zjowowen made their first contribution in https://github.com/opendilab/DI-treetensor/pull/11

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jul 15, 2022)

    What's Changed

    • dev(hansbug): use newer version of treevalue 1.4.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/9

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.1...v0.3.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 22, 2022)

    What's Changed

    • fix(hansbug): fix uncompitable problem with walk by @HansBug in https://github.com/opendilab/DI-treetensor/pull/5
    • dev(hansbug): add tensor method for treetensor.numpy.ndarray by @HansBug in https://github.com/opendilab/DI-treetensor/pull/6
    • fix(hansbug): add subside support to all the functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/7
    • doc(hansbug): add documentation for np.stack, np.split and other 3 functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/8
    • release(hansbug): use version 0.2.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/4

    New Contributors

    • @HansBug made their first contribution in https://github.com/opendilab/DI-treetensor/pull/5

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 4, 2022)

    • Use newer version of treevalue>=1.2.0
    • Add support of torch 1.10.0
    • Add support of potc

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Dec 26, 2021)

  • v0.0.1(Sep 30, 2021)

Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023