Compact Bidirectional Transformer for Image Captioning

Related tags

Deep LearningCBTrans
Overview

Compact Bidirectional Transformer for Image Captioning

Requirements

  • Python 3.8
  • Pytorch 1.6
  • lmdb
  • h5py
  • tensorboardX

Prepare Data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please download the converted VinVL feature from this link and place them under data/mscoco_VinVL/. You can also optionally follow this instruction to prepare the fixed or adaptive bottom-up features extracted by Anderson and place them under data/mscoco/ or data/mscoco_adaptive/.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results of single CBTIC model on Karpathy test split, just run

python  eval.py  --model  save/nsc-transformer-cb-VinVL-feat/model-best.pth   --infos_path  save/nsc-transformer-cb-VinVL-feat/infos_nsc-transformer-cb-VinVL-feat-best.pkl      --beam_size   2   --id  nsc-transformer-cb-VinVL-feat   --split test

To reproduce the results of ensemble of CBTIC models on Karpathy test split, just run

python eval_ensemble.py   --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --beam_size  2   --split  test

Online Evaluation

Please first run

python eval_ensemble.py   --split  test  --language_eval 0  --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --input_json  data/cocotest.json  --input_fc_dir data/mscoco_VinVL/cocobu_test2014/cocobu_fc --input_att_dir  data/mscoco_VinVL/cocobu_test2014/cocobu_att   --input_label_h5    data/cocotalk_bw_label.h5    --language_eval 0        --batch_size  128   --beam_size   2   --id   captions_test2014_cbtic_results 

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as using VinVL feature, run
python  train.py   --noamopt --noamopt_warmup 20000   --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0  --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15     --checkpoint_path   save/transformer-cb-VinVL-feat   --id   transformer-cb-VinVL-feat   --caption_model  cbt     --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box    
  1. Then in the second training stage, you need two GPUs with 12G memory each, please copy the above pretrained model first
cd save
./copy_model.sh  transformer-cb-VinVL-feat    nsc-transformer-cb-VinVL-feat
cd ..

and then run

python  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 14  --max_epochs    30  --start_from   save/nsc-transformer-cb-VinVL-feat     --checkpoint_path   save/nsc-transformer-cb-VinVL-feat   --id  nsc-transformer-cb-VinVL-feat   --caption_model  cbt    --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box 

Note

  1. Even if fixing all random seed, we find that the results of the two runs are still slightly different when using DataParallel on two GPUs. However, the results can be reproduced exactly when using one GPU.
  2. If you are interested in the ablation studies, you can use the git reflog to list all commits and use git reset --hard commit_id to change to corresponding commit.

Citation

@misc{zhou2022compact,
      title={Compact Bidirectional Transformer for Image Captioning}, 
      author={Yuanen Zhou and Zhenzhen Hu and Daqing Liu and Huixia Ben and Meng Wang},
      year={2022},
      eprint={2201.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022