Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Overview

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization

This is the official PyTorch implementation for the HAM method.

Paper | Model | Data

Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis
by Xi Ouyang, Srikrishna Karanam, Ziyan Wu, Terrence Chen, Jiayu Huo, Xiang Sean Zhou, Qian Wang, Jie-Zhi Cheng

Teaser image

Abstract

We propose a new attention-driven weakly supervised algorithm comprising a hierarchical attention mining framework that unifies activation- and gradient-based visual attention in a holistic manner. On two largescale chest X-ray datasets (NIH Chest X-ray14 and CheXpert), it can achieve significant localization performance improvements over the current state of the art while also achieve competitive classification performance.

Release Notes

This repository is a faithful reimplementation of HAM in PyTorch, including all the training and evaluation codes on NIH Chest X-ray14 dataset. We also provide two trained models for this dataset. For CheXpert dataset, you can refer to the data preparation on NIH Chest X-ray14 dataset to implement the code.

Since images in CheXpert are annotated with labels only at image level, we invite a senior radiologist with 10+ years of experience to label the bounding boxes for 9 abnormalities. These annotations are also opensourced here, including 6099 bounding boxes for 2345 images. We hope that it can help the future researchers to better verify their methods.

Installation

Clone this repo.

git clone https://github.com/oyxhust/HAM.git
cd HAM/

We provide the CRF method in this code, which can help to refine the box annotations to close to the mask. It is not activated by default, but pydensecrf should be installed.

pip install cython
pip install git+https://github.com/lucasb-eyer/pydensecrf.git

This code requires PyTorch 1.1+ and python 3+. Please install Pytorch 1.1+ environment, and install dependencies (e.g., torchvision, visdom and PIL) by

pip install -r requirements.txt

Dataset Preparation

For NIH Chest X-ray14 or CheXpert, the datasets must be downloaded beforehand. Please download them on the respective webpages. In the case of NIH Chest X-ray14, we put a few sample images in this code repo.

Preparing NIH Chest X-ray14 Dataset. The dataset can be downloaded here (also could be downloaded from Kaggle Challenge). In particular, you will need to download “images_001.tar.gz", “images_002.tar.gz", ..., and "images_012.tar.gz". All these files will be decompressed into a images folder. The images and labels should be arranged in the same directory structure as datasets/NIHChestXray14/. The folder structure should be as follows:

├── datasets
│   ├── NIHChestXray14
│   │    ├── images
│   │    │    ├── 00000001_000.png
│   │    │    ├── 00000001_001.png
│   │    │    ├── 00000001_002.png
│   │    │    ├── ...
│   │    ├── Annotations
│   │    │    ├── BBoxes.json
│   │    │    └── Tags.json
│   │    ├── ImageSets
│   │    │    ├── bbox
│   │    │    └── Main

BBoxes.json is a dictionary to store the bounding boxes for abnormality localization in this dataset. Tags.json is a dictionary of the image-level labels for all the images. These json files are generated from the original dataset files for better input to our models. ImageSets contains data split files of the training, validation and testing in different settings.

Preparing CheXpert Dataset. The dataset can be downloaded here. You can follow the similar folder structure of NIH Chest X-ray14 dataset to prepare this dataset. Since images in CheXpert are annotated with labels only at image level, we invite a senior radiologist with 10+ years of experience to label the bounding boxes for 9 abnormalities. We release these localization annotations in datasets/CheXpert/Annotations/BBoxes.json. It is a dictionary with the relative image path under CheXpert/images fold as the key, and store the corresponding abnormality box annotations. For each bounding box, the coordinate format is [xmin, ymin, xmax, ymax]. We have labeled 6099 bounding boxes for 2345 images. It is worth noting that the number of our box annotations is significantly larger than the number of annotated boxes in the NIH dataset. Hope to better help future researchers.

Training

Visdom

We use visdom to plot the loss values and the training attention results. Therefore, it is neccesary to open a visdom port during training. Open a terminal in any folder and input:

python -m visdom.server

Click the URL http://localhost:8097 to see the visualization results. Here, it uses the default port 8097.

Also, you can choose to use other ports by

python -m visdom.server -p 10004

10004 is an example, which can be set into any other available port of your machine. The port number "display_port" in the corresponding config file should be also set into the same value, and click the URL http://localhost:10004 to see the visualization results.

Classification Experiments

Train a model on the official split of NIH Chest-Xray14 dataset:

python train.py -cfg configs/NIHChestXray14/classification/official_split.yaml

The training log and visualization results will be stored on output/logs and output/train respectively. Our trained models on offical splits is avaliable on Baidu Yun (code: rhsd) or Google Drive.

Train the models on 5-fold cross-validation (CV) scheme of NIH Chest-Xray14 dataset. In each fold, we use 70% of the annotated and 70% of unannotated images for training, and 10% of the annotated and unannotated images for validation. Then, the rest 20% of the annotated and unannotated images are used for testing. Train on fold1:

python train.py -cfg configs/NIHChestXray14/classification/5fold_validation/fold1.yaml

Config files of other folds can be also found on configs/NIHChestXray14/classification/5fold_validation.

Localization Experiments

Train our model with 100% images (111,240) without any box annotations and test with the 880 images with box annotations on NIH Chest-Xray14 dataset:

python train.py -cfg configs/NIHChestXray14/localization/without_bboxes.yaml

Train the models on 5-fold cross-validation (CV) scheme of NIH Chest-Xray14 dataset. In each fold, we train our model with 50% of the unannotated images and 80% of the annotated images, and tested with the remaining 20% of the annotated images. Train on fold1:

python train.py -cfg configs/NIHChestXray14/localization/5fold_validation/fold1.yaml

Trained models on fold1 is avaliable on Baidu Yun (code: c7np) or Google Drive. Config files of other folds can be also found on configs/NIHChestXray14/localization/5fold_validation.

Testing

Here, we take the test results for the official splits of NIH Chest-Xray14 dataset as an example. It requires the corresponding config file and the trained weights. Please download the trained model on Baidu Yun (code: rhsd) or Google Drive.

Once get the trained model, the test results (classification and localization metrics) can be calculated by:

python test.py -cfg configs/official_split.yaml -w [PATH/TO/OfficialSplit_Model.pt]

Also, the attention maps from our method can be generated by:

python visual.py -cfg configs/official_split.yaml -w [PATH/TO/OfficialSplit_Model.pt]

The attention results will be saved in outputs/visual. You can open the index.html to check all the results in a webpage.

Also, you can download the model trained with box annotations on Baidu Yun (code: c7np) or Google Drive. This model can achieve much better localization results than the model trained on official split.

Code Structure

  • train.py, test.py, visual.py: the entry point for training, testing, and visualization.
  • configs/: config files for training and testing.
  • data/: the data loader.
  • models/: creates the networks.
  • modules/attentions/: the proposed foreground attention module.
  • modules/sync_batchnorm/: the synchronized batchNorm.
  • utils/: define the training, testing and visualization process and the support modules.

Options

Options in config files. "GPUs" can select the gpus. "Means" and "Stds" are used for the normalization. "arch" only supports the resnet structure, you can choose one from ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101','resnet152', 'resnext50_32x4d', 'resnext101_32x8d']. "Downsampling" defines the downsampline rate of the feature map from the backbone, including [8, 16, 32]. "Using_pooling" decides whether to use the first pooling layer in resnet. "Using_dilation" decides whether to use the dilation convolution in resnet. "Using_pretrained_weights" decides whether to use the pretrained weights on ImageNet. "Using_CRF" decides whether to use the CRF to prepocess the input box annotations. It can help to refine the box to more close to the mask annotations. "img_size" and "in_channels" is the size and channel of the input image. "display_port" is the visdom port.

Options in utils/config.py. "model_savepath" is the path to save checkpoint. "outputs_path" is the path to save output results. "cam_w" and "cam_sigma" are the hyperparameters in the soft masking fuction in "refine_cams" function in models/AttentionModel/resnet.py. "cam_loss_sigma" is the hyperparameter for the soft masking in the abnormality attention map. "lse_r" is the hyperparameter for LSE pooling. "loss_ano", "loss_cls", "loss_ex_cls", "loss_bound", and "loss_union" are the weights for the weighting factors for different losses. "cls_thresh" is the threshold for classification prediction to calculate the accuracy. "cam_thresh" is the threshold for localization prediction to get the binary mask. "thresh_TIOU" and "thresh_TIOR" are the thresholds to calculate the TIoU and TIoR. "palette" defines the color for mask visualization.

Citation

If you use this code or our published annotations of CheXpert dataset for your research, please cite our paper.

@article{ouyang2021learning,
  title={Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis},
  author={Ouyang, Xi and Karanam, Srikrishna and Wu, Ziyan and Chen, Terrence and Huo, Jiayu and Zhou, Xiang Sean and Wang, Qian and Cheng, Jie-Zhi},
  journal={IEEE Transactions on Medical Imaging},
  volume={40},
  number={10},
  pages={2698--2710},
  year={2021},
  publisher={IEEE}
}

Acknowledgments

We thank Jiayuan Mao for his Synchronized Batch Normalization code, and Jun-Yan Zhu for his HTML visualization code.

Owner
Xi Ouyang
Xi Ouyang
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022