ICCV2021 - A New Journey from SDRTV to HDRTV.

Related tags

Deep LearningHDRTVNet
Overview

HDRTVNet [Paper Link]

A New Journey from SDRTV to HDRTV

By Xiangyu Chen*, Zhengwen Zhang*, Jimmy S. Ren, Lynhoo Tian, Yu Qiao and Chao Dong

(* indicates equal contribution)

This paper is accepted to ICCV 2021.

Overview

Simplified SDRTV/HDRTV formation pipeline:

Overview of the method:

Getting Started

  1. Dataset
  2. Configuration
  3. How to test
  4. How to train
  5. Metrics
  6. Visualization

Dataset

We conduct a dataset using videos with 4K resolutions under HDR10 standard (10-bit, Rec.2020, PQ) and their counterpart SDR versions from Youtube. The dataset consists of a training set with 1235 image pairs and a test set with 117 image pairs. Please refer to the paper for the details on the processing of the dataset. The dataset can be downloaded from Baidu Netdisk (access code: 6qvu) or OneDrive (access code: HDRTVNet).

We also provide the original Youtube links of these videos, which can be found in this file. Note that we cannot provide the download links since we do not have the copyright to distribute. Please download this dataset only for academic use.

Configuration

Please refer to the requirements. Matlab is also used to process the data, but it is not necessary and can be replaced by OpenCV.

How to test

We provide the pretrained models to test, which can be downloaded from Baidu Netdisk (access code: 2me9) or OneDrive (access code: HDRTVNet). Since our method is casaded of three steps, the results also need to be inferenced step by step.

  • Before testing, it is optional to generate the downsampled inputs of the condition network in advance. Make sure the input_folder and save_LR_folder in ./scripts/generate_mod_LR_bic.m are correct, then run the file using Matlab. After that, matlab-bicubic-downsampled versions of the input SDR images are generated that will be input to the condition network. Note that this step is not necessary, but can reproduce more precise performance.
  • For the first part of AGCM, make sure the paths of dataroot_LQ, dataroot_cond, dataroot_GT and pretrain_model_G in ./codes/options/test/test_AGCM.yml are correct, then run
cd codes
python test.py -opt options/test/test_AGCM.yml
  • Note that if the first step is not preformed, the line of dataroot_cond should be commented. The test results will be saved to ./results/Adaptive_Global_Color_Mapping.
  • For the second part of LE, make sure dataroot_LQ is modified into the path of results obtained by AGCM, then run
python test.py -opt options/test/test_LE.yml
  • Note that results generated by LE can achieve the best quantitative performance. The part of HG is for the completeness of the solution and improving the visual quality forthermore. For testing the last part of HG, make sure dataroot_LQ is modified into the path of results obtained by LE, then run
python test.py -opt options/test/test_HG.yml
  • Note that the results of the each step are 16-bit images that can be converted into HDR10 video.

How to train

  • Prepare the data. Generate the sub-images with specific patch size using ./scripts/extract_subimgs_single.py and generate the down-sampled inputs for the condition network (using the ./scripts/generate_mod_LR_bic.m or any other methods).
  • For AGCM, make sure that the paths and settings in ./options/train/train_AGCM.yml are correct, then run
cd codes
python train.py -opt options/train/train_AGCM.yml
  • For LE, the inputs are generated by the trained AGCM model. The original data should be inferenced through the first step (refer to the last part on how to test AGCM) and then be processed by extracting sub-images. After that, modify the corresponding settings in ./options/train/train_LE.yml and run
python train.py -opt options/train/train_LE.yml
  • For HG, the inputs are also obtained by the last part LE, thus the training data need to be processed by similar operations as the previous two parts. When the data is prepared, it is recommended to pretrain the generator at first by running
python train.py -opt options/train/train_HG_Generator.yml
  • After that, choose a pretrained model and modify the path of pretrained model in ./options/train/train_HG_GAN.yml, then run
python train.py -opt options/train/train_HG_GAN.yml
  • All models and training states are stored in ./experiments.

Metrics

Five metrics are used to evaluate the quantitative performance of different methods, including PSNR, SSIM, SR_SIM, Delta EITP (ITU Rec.2124) and HDR-VDP3. Since the latter three metrics are not very common in recent papers, we provide some reference codes in ./metrics for convenient usage.

Visualization

Since HDR10 is an HDR standard using PQ transfer function for the video, the correct way to visualize the results is to synthesize the image results into a video format and display it on the HDR monitor or TVs that support HDR. The HDR images in our dataset are generated by directly extracting frames from the original HDR10 videos, thus these images consisting of PQ values look relatively dark compared to their true appearances. We provide the reference commands of our extracting frames and synthesizing videos in ./scripts. Please use MediaInfo to check the format and the encoding information of synthesized videos before visualization. If circumstances permit, we strongly recommend to observe the HDR results and the original HDR resources by this way on the HDR dispalyer.

If the HDR displayer is not available, some media players with HDR render can play the HDR video and show a relatively realistic look, such as Potplayer. Note that this is only an approximate alternative, and it still cannot fully restore the appearance of HDR content on HDR monitors.

Citation

If our work is helpful to you, please cite our paper:

@inproceedings{chen2021new,
  title={A New Journey from SDRTV to HDRTV}, 
  author={Chen, Xiangyu and Zhang, Zhengwen and Ren, Jimmy S. and Tian, Lynhoo and Qiao, Yu and Dong, Chao},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
XyChen
PhD. Student,Computer Vision
XyChen
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023