Instance-Dependent Partial Label Learning

Related tags

Deep Learningvalen
Overview

Instance-Dependent Partial Label Learning

Installation


pip install -r requirements.txt

Run the Demo


benchmark-random

mnist

python -u main.py --gpu 0 --bs 256 --partial_type random --dt benchmark --ds mnist --gamma 10 --beta 0.1

kmnist

python -u main.py --gpu 0 --bs 256 --partial_type random --dt benchmark --ds kmnist --gamma 10 --beta 0.1

fmnist

python -u main.py --gpu 0 --bs 256 --partial_type random --dt benchmark --ds fmnist --gamma 10 --beta 0.1

cifar10

python -u main.py --gpu 0 --bs 256 --partial_type random --dt benchmark --ds cifar10 --lr 5e-2 --wd 1e-3 --gamma 10 --beta 0.1

benchmark-instance

mnist

python -u main.py --gpu 0 --bs 256 --partial_type feature --dt benchmark --ds mnist --warm_up 10 --gamma 5 --beta 0.1

kmnist

python -u main.py --gpu 0 --bs 256 --partial_type feature --dt benchmark --ds kmnist --warm_up 10 --gamma 5 --beta 0.1

fmnist

python -u main.py --gpu 0 --bs 256 --partial_type feature --dt benchmark --ds fmnist --warm_up 10 --gamma 5 --beta 0.1

cifar10

python -u main.py --gpu 0 --bs 256 --partial_type feature --dt benchmark --ds cifar10 --lr 5e-2 --wd 1e-3 --warm_up 10 --gamma 10 --beta 0.1 --correct 0.2

realword

lost

python -u main.py --gpu 0 --bs 100 --dt realworld --ds lost --gamma 20 --beta 0.01

MSRCv2

python -u main.py --gpu 0 --bs 100 --dt realworld --ds MSRCv2 --gamma 20 --beta 0.01

BirdSong

python -u main.py --gpu 0 --bs 100 --dt realworld --ds birdac --gamma 20 --beta 0.01

Soccer Player

python -u main.py --gpu 0 --dt realworld --ds spd --gamma 20 --beta 0.01 --correct 0.2

LYN

python -u main.py --gpu 0 --dt realworld --ds LYN --gamma 20 --beta 0.01 --correct 0.2

Data


In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023