EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

Related tags

Deep LearningEdiBERT
Overview

EdiBERT, a generative model for image editing

EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The same EdiBERT model, derived from a single training, can be used on a wide variety of tasks.

edibert_example

We follow the implementation of Taming-Transformers (https://github.com/CompVis/taming-transformers). Main modifications can be found in: taming/models/bert_transformer.py ; scripts/sample_mask_likelihood_maximization.py.

Requirements

A suitable conda environment named edibert can be created and activated with:

conda env create -f environment.yaml
conda activate edibert

FFHQ

Download FFHQ dataset (https://github.com/NVlabs/ffhq-dataset) and put it into data/ffhq/.

Training BERT

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

Training on 1 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,

Training on 2 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,1

Running pre-trained BERT on composite/scribble-edited images

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

In the logs/ folder, download and extract the FFHQ BERT:

gdown --id '1YGDd8XyycKgBp_whs9v1rkYdYe4Oxfb3'
tar -xvzf 2021-10-14T16-32-28_ffhq_transformer_bert_2D.tar.gz

folders and place them into logs.

Then, launch the following script for composite images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_collages/ --mask_folder data/ffhq_collages_masks/ --image_list data/ffhq_collages.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

Then, launch the following script for edits images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_edits/ --mask_folder data/ffhq_edits_masks/ --image_list data/ffhq_edits.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

The samples can then be found in logs/my_model/samples/. Here, the --batch_size argument corresponds to the number of EdiBERT generations per image.

Notebooks for playing with completion/denoising with BERT

Notebooks for image denoising and image inpainting can also be found in the main folder.

Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022