PyTorch reimplementation of Diffusion Models

Overview

PyTorch pretrained Diffusion Models

A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author's TensorFlow implementation.

Quickstart

Running

pip install -e git+https://github.com/pesser/pytorch_diffusion.git#egg=pytorch_diffusion
pytorch_diffusion_demo

will start a Streamlit demo. It is recommended to run the demo with a GPU available.

demo

Usage

Diffusion models with pretrained weights for cifar10, lsun-bedroom, lsun_cat or lsun_church can be loaded as follows:

from pytorch_diffusion import Diffusion

diffusion = Diffusion.from_pretrained("lsun_church")
samples = diffusion.denoise(4)
diffusion.save(samples, "lsun_church_sample_{:02}.png")

Prefix the name with ema_ to load the averaged weights that produce better results. The U-Net model used for denoising is available via diffusion.model and can also be instantiated on its own:

from pytorch_diffusion import Model

model = Model(resolution=32,
              in_channels=3,
              out_ch=3,
              ch=128,
              ch_mult=(1,2,2,2),
              num_res_blocks=2,
              attn_resolutions=(16,),
              dropout=0.1)

This configuration example corresponds to the model used on CIFAR-10.

Producing samples

If you installed directly from github, you can find the cloned repository in <venv path>/src/pytorch_diffusion for virtual environments, and <cwd>/src/pytorch_diffusion for global installs. There, you can run

python pytorch_diffusion/diffusion.py <name> <bs> <nb>

where <name> is one of cifar10, lsun-bedroom, lsun_cat, lsun_church, or one of these names prefixed with ema_, <bs> is the batch size and <nb> the number of batches. This will produce samples from the PyTorch models and save them to results/<name>/.

Results

Evaluating 50k samples with torch-fidelity gives

Dataset EMA Framework Model FID
CIFAR10 Train no PyTorch cifar10 12.13775
TensorFlow tf_cifar10 12.30003
yes PyTorch ema_cifar10 3.21213
TensorFlow tf_ema_cifar10 3.245872
CIFAR10 Validation no PyTorch cifar10 14.30163
TensorFlow tf_cifar10 14.44705
yes PyTorch ema_cifar10 5.274105
TensorFlow tf_ema_cifar10 5.325035

To reproduce, generate 50k samples from the converted PyTorch models provided in this repo with

`python pytorch_diffusion/diffusion.py <Model> 500 100`

and with

python -c "import convert as m; m.sample_tf(500, 100, which=['cifar10', 'ema_cifar10'])"

for the original TensorFlow models.

Running conversions

The converted pytorch checkpoints are provided for download. If you want to convert them on your own, you can follow the steps described here.

Setup

This section assumes your working directory is the root of this repository. Download the pretrained TensorFlow checkpoints. It should follow the original structure,

diffusion_models_release/
  diffusion_cifar10_model/
    model.ckpt-790000.data-00000-of-00001
    model.ckpt-790000.index
    model.ckpt-790000.meta
  diffusion_lsun_bedroom_model/
    ...
  ...

Set the environment variable TFROOT to the directory where you want to store the author's repository, e.g.

export TFROOT=".."

Clone the diffusion repository,

git clone https://github.com/hojonathanho/diffusion.git ${TFROOT}/diffusion

and install their required dependencies (pip install ${TFROOT}/requirements.txt). Then add the following to your PYTHONPATH:

export PYTHONPATH=".:./scripts:${TFROOT}/diffusion:${TFROOT}/diffusion/scripts:${PYTHONPATH}"

Testing operations

To test the pytorch implementations of the required operations against their TensorFlow counterparts under random initialization and random inputs, run

python -c "import convert as m; m.test_ops()"

Converting checkpoints

To load the pretrained TensorFlow models, copy the weights into the pytorch models, check for equality on random inputs and finally save the corresponding pytorch checkpoints, run

python -c "import convert as m; m.transplant_cifar10()"
python -c "import convert as m; m.transplant_cifar10(ema=True)"
python -c "import convert as m; m.transplant_lsun_bedroom()"
python -c "import convert as m; m.transplant_lsun_bedroom(ema=True)"
python -c "import convert as m; m.transplant_lsun_cat()"
python -c "import convert as m; m.transplant_lsun_cat(ema=True)"
python -c "import convert as m; m.transplant_lsun_church()"
python -c "import convert as m; m.transplant_lsun_church(ema=True)"

Pytorch checkpoints will be saved in

diffusion_models_converted/
  diffusion_cifar10_model/
    model-790000.ckpt
  ema_diffusion_cifar10_model/
    model-790000.ckpt
  diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  ema_diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  diffusion_lsun_cat_model/
    model-1761000.ckpt
  ema_diffusion_lsun_cat_model/
    model-1761000.ckpt
  diffusion_lsun_church_model/
    model-4432000.ckpt
  ema_diffusion_lsun_church_model/
    model-4432000.ckpt

Sample TensorFlow models

To produce N samples from each of the pretrained TensorFlow models, run

python -c "import convert as m; m.sample_tf(N)"

Pass a list of model names as keyword argument which to specify which models to sample from. Samples will be saved in results/.

Owner
Patrick Esser
Patrick Esser
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022