PyTorch reimplementation of Diffusion Models

Overview

PyTorch pretrained Diffusion Models

A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author's TensorFlow implementation.

Quickstart

Running

pip install -e git+https://github.com/pesser/pytorch_diffusion.git#egg=pytorch_diffusion
pytorch_diffusion_demo

will start a Streamlit demo. It is recommended to run the demo with a GPU available.

demo

Usage

Diffusion models with pretrained weights for cifar10, lsun-bedroom, lsun_cat or lsun_church can be loaded as follows:

from pytorch_diffusion import Diffusion

diffusion = Diffusion.from_pretrained("lsun_church")
samples = diffusion.denoise(4)
diffusion.save(samples, "lsun_church_sample_{:02}.png")

Prefix the name with ema_ to load the averaged weights that produce better results. The U-Net model used for denoising is available via diffusion.model and can also be instantiated on its own:

from pytorch_diffusion import Model

model = Model(resolution=32,
              in_channels=3,
              out_ch=3,
              ch=128,
              ch_mult=(1,2,2,2),
              num_res_blocks=2,
              attn_resolutions=(16,),
              dropout=0.1)

This configuration example corresponds to the model used on CIFAR-10.

Producing samples

If you installed directly from github, you can find the cloned repository in <venv path>/src/pytorch_diffusion for virtual environments, and <cwd>/src/pytorch_diffusion for global installs. There, you can run

python pytorch_diffusion/diffusion.py <name> <bs> <nb>

where <name> is one of cifar10, lsun-bedroom, lsun_cat, lsun_church, or one of these names prefixed with ema_, <bs> is the batch size and <nb> the number of batches. This will produce samples from the PyTorch models and save them to results/<name>/.

Results

Evaluating 50k samples with torch-fidelity gives

Dataset EMA Framework Model FID
CIFAR10 Train no PyTorch cifar10 12.13775
TensorFlow tf_cifar10 12.30003
yes PyTorch ema_cifar10 3.21213
TensorFlow tf_ema_cifar10 3.245872
CIFAR10 Validation no PyTorch cifar10 14.30163
TensorFlow tf_cifar10 14.44705
yes PyTorch ema_cifar10 5.274105
TensorFlow tf_ema_cifar10 5.325035

To reproduce, generate 50k samples from the converted PyTorch models provided in this repo with

`python pytorch_diffusion/diffusion.py <Model> 500 100`

and with

python -c "import convert as m; m.sample_tf(500, 100, which=['cifar10', 'ema_cifar10'])"

for the original TensorFlow models.

Running conversions

The converted pytorch checkpoints are provided for download. If you want to convert them on your own, you can follow the steps described here.

Setup

This section assumes your working directory is the root of this repository. Download the pretrained TensorFlow checkpoints. It should follow the original structure,

diffusion_models_release/
  diffusion_cifar10_model/
    model.ckpt-790000.data-00000-of-00001
    model.ckpt-790000.index
    model.ckpt-790000.meta
  diffusion_lsun_bedroom_model/
    ...
  ...

Set the environment variable TFROOT to the directory where you want to store the author's repository, e.g.

export TFROOT=".."

Clone the diffusion repository,

git clone https://github.com/hojonathanho/diffusion.git ${TFROOT}/diffusion

and install their required dependencies (pip install ${TFROOT}/requirements.txt). Then add the following to your PYTHONPATH:

export PYTHONPATH=".:./scripts:${TFROOT}/diffusion:${TFROOT}/diffusion/scripts:${PYTHONPATH}"

Testing operations

To test the pytorch implementations of the required operations against their TensorFlow counterparts under random initialization and random inputs, run

python -c "import convert as m; m.test_ops()"

Converting checkpoints

To load the pretrained TensorFlow models, copy the weights into the pytorch models, check for equality on random inputs and finally save the corresponding pytorch checkpoints, run

python -c "import convert as m; m.transplant_cifar10()"
python -c "import convert as m; m.transplant_cifar10(ema=True)"
python -c "import convert as m; m.transplant_lsun_bedroom()"
python -c "import convert as m; m.transplant_lsun_bedroom(ema=True)"
python -c "import convert as m; m.transplant_lsun_cat()"
python -c "import convert as m; m.transplant_lsun_cat(ema=True)"
python -c "import convert as m; m.transplant_lsun_church()"
python -c "import convert as m; m.transplant_lsun_church(ema=True)"

Pytorch checkpoints will be saved in

diffusion_models_converted/
  diffusion_cifar10_model/
    model-790000.ckpt
  ema_diffusion_cifar10_model/
    model-790000.ckpt
  diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  ema_diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  diffusion_lsun_cat_model/
    model-1761000.ckpt
  ema_diffusion_lsun_cat_model/
    model-1761000.ckpt
  diffusion_lsun_church_model/
    model-4432000.ckpt
  ema_diffusion_lsun_church_model/
    model-4432000.ckpt

Sample TensorFlow models

To produce N samples from each of the pretrained TensorFlow models, run

python -c "import convert as m; m.sample_tf(N)"

Pass a list of model names as keyword argument which to specify which models to sample from. Samples will be saved in results/.

Owner
Patrick Esser
Patrick Esser
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022