Neural Tangent Generalization Attacks (NTGA)

Overview

Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation

Stars Forks Last Commit License

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify training data in order to spoil the training process such that a trained network lacks generalizability. We devise Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 15%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10 and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and downloaded in Unlearnable Datasets, and also launch learning on unlearnable data competitions. The following figures show one clean and the corresponding poisoned examples.

Clean NTGA

Installation

Our code uses the Neural Tangents library, which is built on top of JAX, and TensorFlow 2.0. To use JAX with GPU, please follow JAX's GPU installation instructions. Otherwise, install JAX on CPU by running

pip install jax jaxlib --upgrade

Once JAX is installed, clone and install remaining requirements by running

git clone https://github.com/lionelmessi6410/ntga.git
cd ntga
pip install -r requirements.txt

If you only want to examine the effectiveness of NTGAs, you can download datasets here and evaluate with evaluate.py or any code/model you prefer. To use evaluate.py, you do not need to install JAX externally, instead, all dependencies are specified in requirements.txt.

Usage

NTGA Attack

To generate poisoned data by NTGA, run

python generate_attack.py --model_type fnn --dataset cifar10 --save_path ./data/

There are few important arguments:

  • --model_type: A string. Surrogate model used to craft poisoned data. One of fnn or cnn. fnn and cnn stands for the fully-connected and convolutional networks, respectively.
  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --t: An integer. Time step used to craft poisoned data. Please refer to main paper for more details.
  • --eps: A float. Strength of NTGA. The default settings for MNIST, CIFAR-10, and ImageNet are 0.3, 8/255, and 0.1, respectively.
  • --nb_iter: An integer. Number of iteration used to generate poisoned data.
  • --block_size: An integer. Block size of B-NTGA algorithm.
  • --batch_size: An integer.
  • --save_path: A string.

In general, the attacks based on the FNN surrogate have greater influence against the fully-connected target networks, while the attacks based on the CNN surrogate work better against the convolutional target networks. The hyperparameter t plays an important role in NTGA, which controls when an attack will take effect during the training process of a target model. With a smaller t, the attack has a better chance to affect training before the early stop.

Both eps and block_size influence the effectiveness of NTGA. Larger eps leads to stronger but more distinguishable perturbations, while larger block_size results in better collaborative effect (stronger attack) in NTGA but also induces both higher time and space complexities. If you encounter out-of-memory (OOM) errors, especially when using --model_type cnn, please try to reduce block_size and batch_size to save memory usage.

For ImageNet or another custom dataset, please specify the path to the dataset in the code directly. The original clean data and the poisoned ones crafted by NTGA can be found and downloaded in Unlearnable Datasets.

Evaluation

Next, you can examine the effectiveness of the poisoned data crafted by NTGA by calling

python evaluate.py --model_type densenet121 --dataset cifar10 --dtype NTGA \
	--x_train_path ./data/x_train_cifar10_ntga_cnn_best.npy \
	--y_train_path ./data/y_train_cifar10.npy \
	--batch_size 128 --save_path ./figure/

If you are interested in the performance on the clean data, run

python evaluate.py --model_type densenet121 --dataset cifar10 --dtype Clean \
	--batch_size 128 --save_path ./figures/

This code will also plot the learning curve and save it in --save_path ./figures/. The following figures show the results of DenseNet121 trained on the CIFAR-10 dataset. The left figure demonstrates the normal learning curve, where the network is trained on the clean data, and the test accuracy achieves ~93%. On the contrary, the figure on the right-hand side shows the remarkable result of NTGA, where the training accuracy is ~100%, but test accuracy drops sharply to ~37%, in other word, the model fails to generalize.

There are few important arguments:

  • --model_type: A string. Target model used to evaluate poisoned data. One of fnn, fnn_relu, cnn, resnet18, resnet34, or densenet121.
  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --dtype: A string. One of Clean or NTGA, used for figure's title.
  • --x_train_path: A string. Path for poisoned training data. Leave it empty for clean data (mnist or cifar10).
  • --y_train_path: A string. Path for training labels. Leave it empty for clean data (mnist or cifar10).
  • --x_val_path: A string. Path for validation data.
  • --y_val_path: A string. Path for validation labels.
  • --x_test_path: A string. Path for testing data. The ground truth (y_test) is hidden. You can submit the prediction to Competitions.
  • --epoch: An integer.
  • --batch_size: An integer.
  • --save_path: A string.

Visualization

How does the poisoned data look like? Is it truly imperceptible to a human? You can visualize the poisoned data and their normalized perturbations by calling

python plot_visualization.py --dataset cifar10 \
	--x_train_path ./data/x_train_cifar10.npy \
	--x_train_ntga_path ./data/x_train_cifar10_ntga_fnn_t1.npy \
	--save_path ./figure/

The following figure shows some poisoned CIFAR-10 images. As we can see, they look almost the same as the original clean data. However, training on the clean data can achieve ~92% test accuracy, while training on the poisoned data the performance decreases sharply to ~35%.

Here we also visualize the high-resolution ImageNet dataset and find even more interesting results:

The perturbations are nearly invisible. The only difference between the clean and poisoned images is the hue!

There are few important arguments:

  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --x_train_path: A string. Path for clean training data.
  • --x_train_ntga_path: A string. Path for poisoned training data.
  • --num: An integer. Number of data to be visualized. The valid value is 1-5.
  • --save_path: A string.

Results

Here we briefly report the performance of NTGA and two baselines (RFA and DeepConfuse) equipped with the FNN and CNN surrogates. NTGA(·) denotes an attack generated by NTGA with a hyperparameter t mentioned in NTGA Attack, and NTGA(best) represents the results of the best hyperparameter of the specific dataset and surrogate combination. NTGA(1) is the most imperceptible poisoned data which has the lowest-frequency perturbations.

As we can see, NTGA attack has remarkable transferability across a wide range of models, including Fully-connected Networks (FNNs) and Convolutional Neural Networks (CNNs), trained under various conditions regarding the optimization method, loss function, etc.

FNN Surrogate

Target\Attack Clean RFA DeepConfuse NTGA(1) NTGA(best)
Dataset: MNIST
FNN 96.26 74.23 - 3.95 2.57
FNN-ReLU 97.87 84.62 - 2.08 2.18
CNN 99.49 86.99 - 33.80 26.03
Dataset: CIFAR-10
FNN 49.57 37.79 - 36.05 20.63
FNN-ReLU 54.55 43.19 - 40.08 25.95
CNN 78.12 74.71 - 48.46 36.05
ResNet18 91.92 88.76 - 39.72 39.68
DenseNet121 92.71 88.81 - 46.50 47.36
Dataset: ImageNet
FNN 91.60 90.20 - 76.60 76.60
FNN-ReLU 92.20 89.60 - 80.00 80.00
CNN 96.00 95.80 - 77.80 77.80
ResNet18 99.80 98.20 - 76.40 76.40
DenseNet121 98.40 96.20 - 72.80 72.80

CNN Surrogate

Target\Attack Clean RFA DeepConfuse NTGA(1) NTGA(best)
Dataset: MNIST
FNN 96.26 69.95 15.48 8.46 4.63
FNN-ReLU 97.87 84.15 17.50 3.48 2.86
CNN 99.49 94.92 46.21 23.89 15.64
Dataset: CIFAR-10
FNN 49.57 41.31 32.59 28.84 28.81
FNN-ReLU 54.55 46.87 35.06 32.77 32.11
CNN 78.12 73.80 44.84 41.17 40.52
ResNet18 91.92 89.54 41.10 34.74 33.29
DenseNet121 92.71 90.50 54.99 43.54 37.79
Dataset: ImageNet
FNN 91.60 87.80 90.80 75.80 75.80
FNN-ReLU 92.20 87.60 91.00 80.00 80.00
CNN 96.00 94.40 93.00 79.00 79.00
ResNet18 99.80 96.00 92.80 76.40 76.40
DenseNet121 98.40 90.40 92.80 80.60 80.60

Unlearnable Datasets

Here we publicly release the poisoned datasets generated by NTGA. We provide 5 versions for each dataset. FNN(·) denotes an attack generated by NTGA from the FNN surrogate with a hyperparameter t. The best hyperparameter t is selected according to the empirical results. For the 2-class ImageNet, we choose n01560419 and n01910747 (bulbul v.s. jellyfish) from the original ImageNet dataset. Please refer to the main paper and supplementary materials for more details.

  • MNIST
    • FNN(best) = FNN(64)
    • CNN(best) = CNN(64)
  • CIFAR-10
    • FNN(best) = FNN(4096)
    • CNN(best) = CNN(8)
  • ImageNet
    • FNN(best) = FNN(1)
    • CNN(best) = CNN(1)

Please support the project by hitting a star if you find this code or dataset is helpful for your research.

Dataset\Attack Clean FNN(1) FNN(best) CNN(1) CNN(best)
MNIST Download Download Download Download Download
CIFAR-10 Download Download Download Download Download
ImageNet Download Download Download Download Download

We do not provide the test label (y_test.npy) for each dataset since we launched Competitions. Nevertheless, if you are a researcher and need to use these data for academic purpose, we are willing to provide the complete dataset to you. Please send an email to [email protected]. Last but not least, using these data to participate in the competition defeats the entire purpose. So seriously, don't do that.

Competitions

We launch 3 competitions on Kaggle, where we are interested in learning from unlearnable MNIST, CIFAR-10, and 2-class ImageNet created by Neural Tangent Generalization Attack. Feel free to give it a shot if you are interested. We welcome people who can successfully train the model on the unlearnable data and overturn our conclusions.

Kaggle Competitions Unlearnable MNIST Unlearnable CIFAR-10 Unlearnable ImageNet

For instance, you can create a submission file by calling:

python evaluate.py --model_type resnet18 --dataset cifar10 --dtype NTGA \
	--x_train_path ./data/x_train_cifar10_unlearn.npy \
	--y_train_path ./data/y_train_cifar10.npy \
	--x_val_path ./data/x_val_cifar10.npy \
	--y_val_path ./data/y_val_cifar10.npy \
	--x_test_path ./data/x_test_cifar10.npy \
	--save_path ./figure/

The results will be stored as y_pred_cifar10.csv. Please specify --x_test_path for the test data.

Citation

If you find this code or dataset is helpful for your research, please cite our ICML 2021 paper.

@inproceedings{yuan2021neural,
	title={Neural Tangent Generalization Attacks},
	author={Yuan, Chia-Hung and Wu, Shan-Hung},
	booktitle={International Conference on Machine Learning},
	pages={12230--12240},
	year={2021},
	organization={PMLR}
}
Owner
Chia-Hung Yuan
My goal is to develop robust machine learning to reliably interact with a dynamic and uncertain world.
Chia-Hung Yuan
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022