A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

Overview

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster

Motivation

In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a hybrid method with an existing semantic segmentation network to extract semantic information and a traditional LiDAR point cloud cluster algorithm to split each instance object. We argue geometry-based traditional clustering algorithms are worth being considered by showing a state-of-the-art performance among all published end-to-end deep learning solutions on the panoptic segmentation leaderboard of the SemanticKITTI dataset. To our best knowledge, we are the first to attempt the point cloud panoptic segmentation with clustering algorithms. Therefore, instead of working on new models, we give a comprehensive technical survey in this paper by implementing four typical cluster methods and report their performances on the benchmark. Those four cluster methods are the most representative ones with real-time running speed. They are implemented with C++ in this paper and then wrapped as a python function for seamless integration with the existing deep learning frameworks.


Figure






















Dataset Organization

ICCVW21-LiDAR-Panoptic-Segmentation-TradiCV-Survey-of-Point-Cloud-Cluster
├──  Dataset
├        ├── semanticKITTI                 
├            ├── semantic-kitti-api-master         
├            ├── semantic-kitti.yaml
├            ├── data_odometry_velodyne ── dataset ── sequences ── train, val, test         # each folder contains the corresponding sequence folders 00,01...
├            ├── data_odometry_labels ── dataset ── sequences ── train, val, test           # each folder contains the corresponding sequence folders 00,01...
├            └── data_odometry_calib    
├──  method_predictions ── sequences

How to run

```
docker pull pytorch/pytorch:1.7.1-cuda11.0-cudnn8-runtime 
```

Install dependency packages:

```
bash install_dependency.sh
```

Compile specific clusters

```
cd PC_cluster
cd ScanLineRun_cluster/Euclidean_cluster/depth_cluster/SuperVoxel_cluster
bash prepare_packages.sh/prepare_pybind.sh
bash build.sh
```

Note, prepare_packages.sh may redundantly install packages as clusters are supposed to be used independently.

One can download the predicted validation results of Cylinder3D from here: https://drive.google.com/file/d/1QkV8zmRaOAgAZse5CGtlmijcLJVnh7XP/view?usp=sharing

We get the prediction of validation 08 sequence by using the provided checkpoint of Cylinder3D. Thanks for sharing the code!

After downloading, unzip the 08 file, put it inside ./method_predictions/sequences/

It looks like ./method_predictions/sequences/08/predictions/*.label

Run the cluster algorithm

```
python semantic_then_instance_post_inferece.py
```

It should keep updating the visualization figure output_example.png, and overwrite predicted labels in ./method_predictions/sequences/08/predictions/

One can unzip 08 again if wants to run the cluster algorithm again.

Some parameters can be tuned in args parser.

After generating the predicted panoptic label on validation set, one can simply run:

```
bash evaluation_panoptic.sh
```

Some changes of local path may need to be done. Just follow the error to change them, should be easy.

The reported numbers should be exactly the same as the paper since traditional methods have no randomness.

Publication

Please cite the paper if you use this code:

@inproceedings{zhao2021technical,
  title={A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation},
  author={Zhao, Yiming and Zhang, Xiao and Huang, Xinming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2464--2473},
  year={2021}
}


Owner
YimingZhao
Job seeking at Shanghai. I'm a Ph.D. student at Worcester Polytechnic Institute, working on deep learning, autonomous driving, and general robotic vision.
YimingZhao
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022