Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

Overview

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

PWC

PWC

PWC

PWC

Official pytorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation
To appear in the Proceedings of the 29th ACM International Conference on Multimedia (ACM MM '21)

Teaser

Abstract

We propose Uncertainty Augmented Context Attention network (UACANet) for polyp segmentation which consider a uncertain area of the saliency map. We construct a modified version of U-Net shape network with additional encoder and decoder and compute a saliency map in each bottom-up stream prediction module and propagate to the next prediction module. In each prediction module, previously predicted saliency map is utilized to compute foreground, background and uncertain area map and we aggregate the feature map with three area maps for each representation. Then we compute the relation between each representation and each pixel in the feature map. We conduct experiments on five popular polyp segmentation benchmarks, Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB and CVC-300, and achieve state-of-the-art performance. Especially, we achieve 76.6% mean Dice on ETIS dataset which is 13.8% improvement compared to the previous state-of-the-art method.

1. Create environment

  • Create conda environment with following command conda create -n uacanet python=3.7
  • Activate environment with following command conda activate uacanet
  • Install requirements with following command pip install -r requirements.txt

2. Prepare datasets

  • Download dataset from following URL
  • Move folder data to the repository.
  • Folder should be ordered as follows,
|-- configs
|-- data
|   |-- TestDataset
|   |   |-- CVC-300
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- CVC-ClinicDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- CVC-ColonDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- ETIS-LaribPolypDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   `-- Kvasir
|   |       |-- images
|   |       `-- masks
|   `-- TrainDataset
|       |-- images
|       `-- masks
|-- EvaluateResults
|-- lib
|   |-- backbones
|   |-- losses
|   `-- modules
|-- results
|-- run
|-- snapshots
|   |-- UACANet-L
|   `-- UACANet-S
`-- utils

3. Train & Evaluate

  • You can train with python run/Train.py --config configs/UACANet-L.yaml

  • You can generate prediction for test dataset with python run/Test.py --config configs/UACANet-L.yaml

  • You can evaluate generated prediction with python run/Eval.py --config configs/UACANet-L.yaml

  • You can also use python Expr.py --config configs/UACANet-L.yaml to train, generate prediction and evaluation in single command

  • (optional) Download our best result checkpoint from following URL for UACANet-L and UACANet-S.

4. Experimental Results

  • UACANet-S
dataset              meanDic    meanIoU    wFm     Sm    meanEm    mae    maxEm    maxDic    maxIoU    meanSen    maxSen    meanSpe    maxSpe
-----------------  ---------  ---------  -----  -----  --------  -----  -------  --------  --------  ---------  --------  ---------  --------
CVC-300                0.902      0.837  0.886  0.934     0.974  0.006    0.976     0.906     0.840      0.959     1.000      0.992     0.995
CVC-ClinicDB           0.916      0.870  0.917  0.940     0.965  0.008    0.968     0.919     0.873      0.942     1.000      0.991     0.995
Kvasir                 0.905      0.852  0.897  0.914     0.948  0.026    0.951     0.908     0.855      0.911     1.000      0.976     0.979
CVC-ColonDB            0.783      0.704  0.772  0.848     0.894  0.034    0.897     0.786     0.706      0.801     1.000      0.958     0.962
ETIS-LaribPolypDB      0.694      0.615  0.650  0.815     0.848  0.023    0.851     0.696     0.618      0.833     1.000      0.887     0.891
  • UACANet-L
dataset              meanDic    meanIoU    wFm     Sm    meanEm    mae    maxEm    maxDic    maxIoU    meanSen    maxSen    meanSpe    maxSpe
-----------------  ---------  ---------  -----  -----  --------  -----  -------  --------  --------  ---------  --------  ---------  --------
CVC-300                0.910      0.849  0.901  0.937     0.977  0.005    0.980     0.913     0.853      0.940     1.000      0.993     0.997
CVC-ClinicDB           0.926      0.880  0.928  0.943     0.974  0.006    0.976     0.929     0.883      0.943     1.000      0.992     0.996
Kvasir                 0.912      0.859  0.902  0.917     0.955  0.025    0.958     0.915     0.862      0.923     1.000      0.983     0.987
CVC-ColonDB            0.751      0.678  0.746  0.835     0.875  0.039    0.878     0.753     0.680      0.754     1.000      0.953     0.957
ETIS-LaribPolypDB      0.766      0.689  0.740  0.859     0.903  0.012    0.905     0.769     0.691      0.813     1.000      0.932     0.936
  • Qualitative Results

results

5. Citation

@misc{kim2021uacanet,
    title={UACANet: Uncertainty Augmented Context Attention for Polyp Semgnetaion},
    author={Taehun Kim and Hyemin Lee and Daijin Kim},
    year={2021},
    eprint={2107.02368},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
  • Conference version will be added soon.

6. Acknowledgement

  • Basic training strategy, datasets and evaluation methods are brought from PraNet. Especially for the evalutation, we made Python version based on PraNet's MatLab version and verified on various samples. Thanks for the great work!
Owner
Taehun Kim
Taehun Kim. Ph.D Candidate, POSTECH Intelligent Media Lab.
Taehun Kim
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022