A Unified Framework and Analysis for Structured Knowledge Grounding

Overview

UnifiedSKG ๐Ÿ“š : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

Open In Colab

Code for paper UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models. Please refer to our project page for up-to-date related resources (e.g., papers, code, tools, tutorials) in Structured Knowledge Grounding.

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they were historically studied in separate by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into the text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We show that large language models like T5, with simple modification when necessary, achieve state-of-the-art performance on all 21 tasks. UnifiedSKG facilitates the investigation of multi-task, zero-shot, and few-shot learning. We demonstrate that multi-task prefix-tuning with UNIFIEDSKG improves the performance on most tasks and show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. UnifiedSKG also enables a series of controlled experiments on structured knowledge encoding variants across SKG tasks. We find that T5โ€™s sensitivity to structured knowledge encoding variations varies across tasks.

UnifiedSKG is easily extensible to more tasks. We encourage researchers to make a pull request to add their datasets, metrics, models to the UnifiedSKG framework!

Updates

Content

Cloning this repo

In order to include third-party dependencies in this repository, make sure to clone recursively, e.g.:

git clone --recurse-submodules [email protected]:HKUNLP/UnifiedSKG.git

Dependencies

To establish the environment run this code in the shell (the third line is for CUDA11.1):

conda env create -f py3.7pytorch1.8.yaml
conda activate py3.7pytorch1.8new
pip install datasets==1.14.0
# The following line to be replaced depending on your cuda version.
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

That will create the environment py3.7pytorch1.8new we used.

Usage

Environment setup

Activate the environment by running

conda activate py3.7pytorch1.8new

WandB setup

Setup WandB for logging (registration needed):

export WANDB_ENTITY=YOUR_WANDB_USERNAME
export WANDB_API_KEY=YOUR_WANDB_API_KEY
export WANDB_PROJECT=YOUR_PROJECT_NAME

Training

T5-base finetuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

If you want to resume training, remove the --overwrite_output_dir flag from the above command:

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-base prefix-tuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_prefix_wikitq.cfg --run_name T5_base_prefix_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_prefix_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-3b finetuning on WikiTQ (8 GPUs, 128 effective batch size)

deepspeed train.py --deepspeed deepspeed/ds_config_zero2.json --seed 2 --cfg Salesforce/T5_3b_finetune_wikitq.cfg --run_name T5_3b_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 16 --num_train_epochs 50 --adafactor false --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_3b_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

Load weights

See Open In Colab

Code structure overview of UnifiedSKG

.
โ”œโ”€โ”€ configure                              # Config files for experiments, tasks, and settings
โ”‚   โ”œโ”€โ”€ META_TUNING                        # Config files for tasks and settings
โ”‚   โ””โ”€โ”€ Salesforce                         # Config files for experiments. We name this diretory as Salesforce to thank Salesforce Research for providing a large number of GPUs. We would like also to thank Amazon Research Awards, ServiceNow Research, and Yale NLP for providing computing resources generously.
โ”‚
โ”œโ”€โ”€ metrics                                # Code for evaluation
โ”‚   โ””โ”€โ”€ ...                                # Please check the README of the ./seq2seq_construction.
โ”œโ”€โ”€ models                                 # Code for models
โ”‚   โ”œโ”€โ”€ adapter                            # Code for T5 and BART with adapters (based on HuggingFace Transformers)
โ”‚   โ”œโ”€โ”€ prompt                             # Code for T5 and BART with prefix-tuning (based on HuggingFace Transformers)
โ”‚   โ””โ”€โ”€ unified
โ”‚           โ”œโ”€โ”€ base.py                    # Code for the base model that enables an arbitrary model to be pushed to HuggingFace Model Hub (namely, PushToHubFriendlyModel)
โ”‚           โ”œโ”€โ”€ finetune.py                # Code for finetuning
โ”‚           โ”œโ”€โ”€ adaptertuning.py           # Code for adapter-tuning
โ”‚           โ””โ”€โ”€ prefixtuning.py            # Code for prefix-tuning
โ”‚
โ”œโ”€โ”€ seq2seq_construction                   # Code for converting raw data into sequences
โ”‚    โ””โ”€โ”€  ...                              # Please check the README in this directory.
โ”‚
โ”œโ”€โ”€ tasks                                  # Code for loading raw data
โ”‚    โ””โ”€โ”€  ...                              # Please check the README in this directory.
โ”‚
โ”œโ”€โ”€ third_party                            # Packages from third parties
โ”‚    โ””โ”€โ”€  ...                              # Please check the README in this directory.
โ”‚
โ”œโ”€โ”€ utils                                  # Code for some (probably) useful stuff
โ”‚       โ”œโ”€โ”€ processor                      # Adopted from Tapex: the processor that handles table truncation and linearization
        โ”‚        โ””โ”€โ”€  ...            
โ”‚       โ”œโ”€โ”€ configure.py                   # Code for parsing config files in ./configure
โ”‚       โ”œโ”€โ”€ dataset.py                     # Code for converting input and output sequences into Datasets for training
โ”‚       โ”œโ”€โ”€ tool.py                        # Code for loading models, seq2seq constructors, and evaluators
โ”‚       โ”œโ”€โ”€ trainer.py                     # Code for EvaluationFriendlyTrainer. If you want make training-specific modifications, you may want to change something here.
โ”‚       โ””โ”€โ”€ training_arguments.py          # Code for seq2seq training arguments
โ”‚
โ”œโ”€โ”€ .gitignore                 
โ”œโ”€โ”€ .gitmodules                    
โ”œโ”€โ”€ py3.7pytorch1.8.yaml                   # Anaconda environment config file
โ”œโ”€โ”€ README.md                              # The README file you are looking at :)
โ””โ”€โ”€ train.py                               # Entry code, which controls train, eval, test, storage, and logging

How to unify a new task into the framework?

(README in ./tasks, ./seq2seq_construction, ./metrics, ./configure can also be useful)

  • step 1, Add the "Loader" of raw data in ./tasks, (you can search in huggingface dataset website firstly to find whether there is already a usable script, if not, that's great because you can be the contributor of both this project and huggingface community.

  • step 2, Add the "Wrapper" which construct "seq_in"("user request input" & "structured knowledge input") and "seq_out" from and add to the raw_data for seq2seq unification.

  • step 3, Add the "Evaluator"(for task) in ./metrics. if any third_party repo are used, please add them into .gitmodules.

  • step 3.5(optional), You can always add new "Model" into the ./models/ if you like, change the path in config files to drive new model.

  • step 4, Add the "Config" file to drive your task or all the tasks we have by finetune/multi-task-finetune/pretrain/prefix-tuning/multi-task-prefix-tuning... or other ways.

And this is all for it ! =)

Contributors

Owner
HKU NLP Group
HKU NLP Group
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewiฤ™ลบlikowski 8 Oct 09, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and โ€œWowโ€ Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and โ€œWowโ€ Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls ่ฟ‘็บขๅค–ๅ…‰่ฐฑๅˆ†ๆžๆŠ€ๆœฏๅฑžไบŽไบคๅ‰้ข†ๅŸŸ๏ผŒ้œ€่ฆๅŒ–ๅญฆใ€่ฎก็ฎ—ๆœบ็ง‘ๅญฆใ€็”Ÿ็‰ฉ็ง‘ๅญฆ็ญ‰ๅคš้ข†ๅŸŸ็š„ๅˆไฝœใ€‚ไธบๆญค๏ผŒๅœจ๏ผˆๅŒ—้‚ฎ้‚ฎ็”ตๅคงๅญฆๆจ่พ‰ๅŽ่€ๅธˆๅ›ข้˜Ÿ๏ผ‰ๆŒ‡ๅฏผไธ‹

Fu Pengyou 6 Dec 17, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

่ต›้ข˜่ƒŒๆ™ฏ ๅœจๅ•†ๅ“็Ÿฅ่ฏ†ไบงๆƒ้ข†ๅŸŸ๏ผŒ็Ÿฅ่ฏ†ไบงๆƒไฝ“็Žฐไธบๅœจ็บฟๅ•†ๅ“็š„่ฎพ่ฎกๅ’Œๅ“็‰Œใ€‚ไธๅนธ็š„ๆ˜ฏ๏ผŒๅœจๆฏไธ€ๅคฉ๏ผŒๅญ˜ๅœจ็€้žๆณ•ๅ•†ๆˆท้€š่ฟ‡ไธ€ไบ›ๅฏนๆŠ—ๆ‰‹ๆฎตๅนฒๆ‰ฐๅ•†ๆ ‡่ฏ†ๅˆซๆฅ้€ƒ้ฟไพตๆƒ๏ผŒ่ฟ™ๅธฆๆฅไบ†ๅพˆ้ซ˜็š„็Ÿฅ่ฏ†ไบงๆƒ้ฃŽ้™ฉๅ’Œ่ดขๅŠกๆŸๅคฑใ€‚ไธบไบ†ไฟƒ่ฟ›ๅ…ˆ่ฟ›็š„ๅคšๅช’ไฝ“ไบบๅทฅๆ™บ่ƒฝๆŠ€ๆœฏ็š„ๅ‘ๅฑ•๏ผŒไปฅไฟๆŠคไผไธšๆฅไน‹ไธๆ˜“็š„ๅˆ›ไฝœๅ’Œๆƒณๆณ•ๅ…ๅ—ๆถๆ„ไฝฟ็”จๅ’Œๅ‰ฝ็ชƒ๏ผŒๅ› ๆญคๆๅ‡บไบ†้ฒๆฃ’ๆ€งๆ ‡่ฏ†ๆฃ€ๆต‹ๆŒ‘ๆˆ˜่ต›

65 Dec 22, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woลบnicki 17 Aug 04, 2022
Monitora la qualitร  della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualitร  della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023