Efficient Lottery Ticket Finding: Less Data is More

Overview

Efficient Lottery Ticket Finding: Less Data is More

License: MIT

Codes for this paper Efficient Lottery Ticket Finding: Less Data is More. [ICML 2021]

Zhenyu Zhang*, Xuxi Chen*, Tianlong Chen*, Zhangyang Wang

Overview

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match the latter’s accuracies. However, finding winning tickets requires burdensome computations in the train-prune-retrain process, especially on large-scale datasets (e.g., ImageNet), restricting their practical benefits. This paper explores a new perspective on finding lottery tickets more efficiently, by doing so only with a specially selected subset of data, called Pruning- Aware Critical set (PrAC set), rather than using the full training set. The concept of PrAC set was inspired by the recent observation, that deep networks have samples that are either hard to memorize during training, or easy to forget during pruning. A PrAC set is thus hypothesized to capture those most challenging and informative examples for the dense model. We observe that a high-quality winning ticket can be found with training and pruning the dense network on the very compact PrAC set, which can substantially save training iterations for the ticket finding process.

Prerequisites

Pytorch >= 1.4

torchvision

advertorch

Usage

Vanilla Lottery Tickets

python -u main_imp.py \
	--data data/cifar10 \
	--dataset cifar10 \
	--arch res20s \
	--batch_size 128 \
	--lr 0.1 \
	--pruning_times 16 \
	--prune_type rewind_lt \
	--rewind_epoch 2 \
	--save_dir lt_cifar10_res20s

PrAC Lottery Tickets

python -u main_PrAC_imp.py \
	--data data/cifar10 \
	--dataset cifar10 \
	--arch res20s \
	--split_file npy_files/cifar10-train-val.npy \
	--batch_size 128 \
	--lr 0.1 \
	--pruning_times 16 \
	--eb_eps 0.08 \
	--prune_type rewind_lt \
	--rewind_epoch 2 \
	--threshold 0 \
	--save_dir PrAC_lt_cifar10_res20s
	

Train subnetworks

python -u main_train.py \
	--data data/cifar10 \
	--dataset cifar10 \
	--arch res20s \
	--batch_size 128 \
	--lr 0.1 \
	--init_dir PrAC_lt_cifar10_res20s/1checkpoint.pth.tar \ 
	--mask_dir PrAC_lt_cifar10_res20s/1checkpoint.pth.tar \ # sparsity=20%
	--save_dir retrain_PrAC_lt_cifar10_res20s/1

Citation


Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022