Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

Overview

EMS-COLS-recourse

Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

Folder structure:

  • data folder contains raw and final preprocessed data, along with the pre-processing script.
  • Src folder contain the code for our method.
  • trained_model contains the trained black box model checkpoint.

Making the environment

conda create -n rec_gen python=3.8.1
conda activate rec_gen
pip install -r requirements.txt

Steps for running experiments.

change current working directory to src

cd ./src/
  1. Run data_io.py to dump mcmc cost samples.
python ./utils/data_io.py --save_data --data_name adult_binary --dump_negative_data --num_mcmc 1000

python ./utils/data_io.py --save_data --data_name compas_binary --dump_negative_data --num_mcmc 1000
  1. run main experiments on COLS and P-COLS.
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_main --budget 5000
python run.py --data_name compas_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_main --budget 5000

python run.py --data_name adult_binary --num_mcmc 1000 --model pls --num_cfs 10 --project_name exp_main --budget 5000
python run.py --data_name compas_binary --num_mcmc 1000 --model pls --num_cfs 10 --project_name exp_main --budget 5000
  1. Run ablation Experiments
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval cost
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval cost_simple
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval proximity
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval sparsity
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval diversity
  1. Run experiments with budget
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 500
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 1000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 2000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 3000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 5000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 10000
  1. Run experiments with number of counterfactuals
python run.py --data_name adult_binary --model model_name --num_cfs 1 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 2 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 3 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 5 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 10 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 20 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 30 --num_users 100 --project_name exp_cfs --budget 5000
  1. Experiment with respect to Monte Carlo samples
  • Run these commands for different num_mcmc values. Default set to 5 in commands.
python ./utils/data_io.py --save_data --data_name adult_binary --dump_negative_data --num_mcmc 5

python run.py --data_name adult_binary --num_mcmc 5 --model model_name --num_cfs 10 --project_name exp_mcmc --budget 5000 --num_users 100

To train a new blackbox model

  • Run this right after preprocessing the data.
python train_model.py --data_name adult --max_epochs 1000 --check_val_every_n_epoch=1 --learning_rate=0.0001
Owner
Prateek Yadav
Prateek Yadav
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021