This project uses Template Matching technique for object detecting by detection of template image over base image.

Overview

Object Detection Project Using OpenCV

projectLogo

This project uses Template Matching technique for object detecting by detection the template image over base image.

REQUIREMENTS

  • Python python  

  • OpenCV   

pip install opencv-python
pip install Tkinter

📝 CODE EXPLANATION

Importing Differnt Libraries
import cv2
import tkinter as tk 
from tkinter import filedialog,messagebox
import os
import sys

Taking Image input using Tkinter

Base Image Input Template Image Input
Base Image Input Template Image Input

Taking User Input using TKinter

root = tk.Tk() 
root.withdraw() 
file_path_base = filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Base Image: ")
file_path_temp= filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Template Image: ")

Loading base image and template image using cv2.imread()

Input Image Template Image Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
try:
    img = cv2.imread(file_path_base)

cv2.cvtColor()method is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV.

Syntax: cv2.cvtColor(image, code, dst, dstCn)

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    template = cv2.imread(file_path_temp,0)

Getting the height and width of the template image using .shape method.

    h ,w = template.shape

Error dialogue box using Tkinter

error

except cv2.error:
   messagebox.showinfo("Warning!","No Image Found!")
   sys.exit(0)

cv2.matchTemplate is used to comapare images. It gives a 2D-array as output.

match = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.99

cv2.minMaxLoc returns the top-left corner of the template position for the best match.

min_val, max_val, min_location, max_location = cv2.minMaxLoc(match)
location = max_location
font = cv2.FONT_HERSHEY_PLAIN

cv2.rectangle() method is used to draw a rectangle on any image.

Syntax: cv2.rectangle(image, start_point, end_point, color, thickness)

cv2.rectangle(img, location, (location[0] + w, location[1] + h), (0,0,255), 2)

cv2.putText() method is used to draw a text string on any image.

Syntax: cv2.putText(image, text, start_point, font, fontScale, color, thickness, lineType, bottomLeftOrigin)

cv2.putText(img,"Object Spotted.", (location[0]-40,location[1]-5),font , 1, (0,0,0),2)

  • cv2.imwrite() method is used to save an image to any storage device. This will save the image according to the specified format in current working directory.
  • cv2.imshow method is used to display an image in a window. The window automatically fits to the image size.

Syntax: cv2.imwrite(filename, image)

Syntax: cv2.imshow(window_name, image)

cv2.imwrite('images/result.jpg',img)
cv2.imshow('Results.jpg',img)

cv2.waitkey() allows you to wait for a specific time in milliseconds until you press any button on the keyword.

cv2.waitKey(0)

cv2.destroyAllWindows() method destroys all windows whenever any key is pressed.

cv2.destroyAllWindows()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source.
Pratham Bhatnagar
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022