EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

Overview

EntityQuestions

This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-centric Questions Challenge Dense Retrievers by Chris Sciavolino*, Zexuan Zhong*, Jinhyuk Lee, and Danqi Chen (* equal contribution).

[9/16/21] This repo is not yet set in stone, we're still putting finishing touches on the tooling and documentation :) Thanks for your patience!

Quick Links

Installation

You can download a .zip file of the dataset here, or using wget with the command:

$ wget https://nlp.cs.princeton.edu/projects/entity-questions/dataset.zip

We include the dependencies needed to run the code in this repository. We recommend having a separate miniconda environment for running DPR code. You can create the environment using the following commands:

$ conda create -n EntityQ python=3.6
$ conda activate EntityQ
$ pip install -r requirements.txt

Dataset Overview

The unzipped dataset directory should have the following structure:

dataset/
    | train/
        | P*.train.json     // all randomly sampled training files 
    | dev/
        | P*.dev.json       // all randomly sampled development files
    | test/
        | P*.test.json      // all randomly sampled testing files
    | one-off/
        | common-random-buckets/
            | P*/
                | bucket*.test.json
        | no-overlap/
            | P*/
                | P*_no_overlap.{train,dev,test}.json
        | nq-seen-buckets/
            | P*/
                bucket*.test.json
        | similar/
            | P*
                | P*_similar.{train,dev,test}.json

The main dataset is included in dataset/ under train/, dev/, and test/, each containing the randomly sampled training, development, and testing subsets, respectively. For example, the evaluation set for place-of-birth (P19) can be found in the dataset/test/P19.test.json file.

We also include all of the one-off datasets we used to generate the tables/figures presented in the paper under dataset/one-off/, explained below:

  • one-off/common-random-buckets/ contains buckets of 1,000 randomly sampled examples, used to produce Fig. 1 of the paper (specifically for rand-ent).
  • one-off/no-overlap/ contains the training/development splits for our analyses in Section 4.1 of the paper (we do not use the testing split in our analysis). These training/development sets have subject entities with no token overlap with subject entities of the randomly sampled test set (specifically for all fine-tuning in Table 2).
  • one-off/nq-seen-buckets/ contains buckets of questions with subject entities that overlap with subject entities seen in the NQ training set, used to produce Fig. 1 of the paper (specifically for train-ent).
  • one-off/similar contains the training/development splits for the syntactically different but symantically equal question sets, used for our analyses in Section 4.1 (specifically the similar rows). Again, we do not use the testing split in our analysis. These questions are identical to one-off/no-overlap/ but use a different question template.

Retrieving DPR Results

Our analysis is based on a previous version of the DPR repository (specifically the Oct. 5 version w. hash 27a8436b070861e2fff481e37244009b48c29c09), so our commands may not be up-to-date with the March 2021 release. That said, most of the commands should be clearly transferable.

First, we recommend following the setup guide from the official DPR repository. Once set up, you can download the relevant pre-trained models/indices using their download_data.py script. For our analysis, we used the DPR-NQ model and the DPR-Multi model. To run retrieval using a pre-trained model, you'll minimally need to download:

  1. The pre-trained model
  2. The Wikipedia passage splits
  3. The encoded Wikipedia passage FAISS index
  4. A question/answer dataset

With this, you can use the following python command:

python dense_retriever.py \
    --batch_size 512 \
    --model_file "path/to/pretrained/model/file.cp" \
    --qa_file "path/to/qa/dataset/to/evaluate.json" \
    --ctx_file "path/to/wikipedia/passage/splits.tsv" \
    --encoded_ctx_file "path/to/encoded/wikipedia/passage/index/" \
    --save_or_load_index \
    --n-docs 100 \
    --validation_workers 1 \
    --out_file "path/to/desired/output/location.json"

We had access to a single 11Gb Nvidia RTX 2080Ti GPU w. 128G of RAM when running DPR retrieval.

Retrieving BM25 Results

We use the Pyserini implementation of BM25 for our analysis. We use the default settings and index on the same passage splits downloaded from the DPR repository. We include steps to re-create our BM25 results below.

First, we need to pre-process the DPR passage splits into the proper format for BM25 indexing. We include this file in bm25/build_bm25_ctx_passages.py. Rather than writing all passages into a single file, you can optionally shard the passages into multiple files (specified by the n_shards argument). It also creates a mapping from the passage ID to the title of the article the passage is from. You can use this file as follows:

python bm25/build_bm25_ctx_passages.py \
    --wiki_passages_file "path/to/wikipedia/passage/splits.tsv" \
    --outdir "path/to/desired/output/directory/" \
    --title_index_path "path/to/desired/output/directory/.json" \
    --n_shards number_of_shards_of_passages_to_write

Now that you have all the passages in files, you can build the BM25 index using the following command:

python -m pyserini.index -collection JsonCollection \
    -generator DefaultLuceneDocumentGenerator \
    -threads 4 \
    -input "path/to/generated/passages/folder/" \
    -index "path/to/desired/index/folder/" \
    -storePositions -storeDocvectors -storeRaw

Once the index is built, you can use it in the bm25/bm25_retriever.py script to get retrieval results for an input file:

python bm25/bm25_retriever.py \
    --index_path "path/to/built/bm25/index/directory/" \
    --passage_id_to_title_path "path/to/title_index_path/from_step_1.json" \
    --input "path/to/input/qa/file.json" \
    --output_dir "path/to/output/directory/"

By default, the script will retrieve 100 passages (--n_docs), use string matching to determine answer presence (--answer_type), and take in .json files (--input_file_type). You can optionally provide a glob using the --glob flag. The script writes the results to the file with the same name as the input file, but in the output directory.

Evaluating Retriever Results

We provide an evaluation script in utils/accuracy.py. The expected format is equivalent to DPR's output format. It either accepts a single file to evaluate, or a glob of multiple files if the --glob option is set. To evaluate a single file, you can use the following command:

python utils/accuracy.py \
    --results "path/to/retrieval/results.json" \
    --k_values 1,5,20,100

or with a glob with:

python utils/accuracy.py \
    --results="path/to/glob*.test.json" \
    --glob \
    --k_values 1,5,20,100

Bugs or Questions?

Feel free to open an issue on this GitHub repository and we'd be happy to answer your questions as best we can!

Citation

If you use our dataset or code in your research, please cite our work:

@inproceedings{sciavolino2021simple,
   title={Simple Entity-centric Questions Challenge Dense Retrievers},
   author={Sciavolino, Christopher and Zhong, Zexuan and Lee, Jinhyuk and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022