Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Overview

Neural Scene Flow Fields

PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

[Project Website] [Paper] [Video]

Dependency

The code is tested with Python3, Pytorch >= 1.6 and CUDA >= 10.2, the dependencies includes

  • configargparse
  • matplotlib
  • opencv
  • scikit-image
  • scipy
  • cupy
  • imageio.
  • tqdm
  • kornia

Video preprocessing

  1. Download nerf_data.zip from link, an example input video with SfM camera poses and intrinsics estimated from COLMAP (Note you need to use COLMAP "colmap image_undistorter" command to undistort input images to get "dense" folder as shown in the example, this dense folder should include "images" and "sparse" folders).

  2. Download single view depth prediction model "model.pt" from link, and put it on the folder "nsff_scripts".

  3. Run the following commands to generate required inputs for training/inference:

    # Usage
    cd nsff_scripts
    # create camera intrinsics/extrinsic format for NSFF, same as original NeRF where it uses imgs2poses.py script from the LLFF code: https://github.com/Fyusion/LLFF/blob/master/imgs2poses.py
    python save_poses_nerf.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/"
    # Resize input images and run single view model, 
    # argument resize_height: resized image height for model training, width will be resized based on original aspect ratio
    python run_midas.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/" --resize_height 288
    # Run optical flow model
    ./download_models.sh
    python run_flows_video.py --model models/raft-things.pth --data_path /home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/ 

Rendering from an example pretrained model

  1. Download pretraind model "kid-running_ndc_5f_sv_of_sm_unify3_F00-30.zip" from link. Unzipping and putting it in the folder "nsff_exp/logs/kid-running_ndc_5f_sv_of_sm_unify3_F00-30/360000.tar".

Set datadir in config/config_kid-running.txt to the root directory of input video. Then go to directory "nsff_exp":

   cd nsff_exp
   mkdir logs
  1. Rendering of fixed time, viewpoint interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_bt --target_idx 10

By running the example command, you should get the following result: Alt Text

  1. Rendering of fixed viewpoint, time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_lockcam_slowmo --target_idx 8

By running the example command, you should get the following result: Alt Text

  1. Rendering of space-time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_slowmo_bt  --target_idx 10

By running the example command, you should get the following result: Alt Text

Training

  1. In configs/config_kid-running.txt, modifying expname to any name you like (different from the original one), and running the following command to train the model:
    python run_nerf.py --config configs/config_kid-running.txt

The per-scene training takes ~2 days using 4 Nvidia GTX2080TI GPUs.

  1. Several parameters in config files you might need to know for training a good model on in-the-wild video
  • final_height: this must be same as --resize_height argument in run_midas.py, in kid-running case, it should be 288.
  • N_samples: in order to render images with higher resolution, you have to increase number sampled points such as 256 or 512
  • chain_sf: model will perform local 5 frame consistency if set True, and perform 3 frame consistency if set False. For faster training, setting to False.
  • start_frame, end_frame: indicate training frame range. The default model usually works for video of 1~2s and 30-60 frames work the best for default hyperparameters. Training on longer frames can cause oversmooth rendering. To mitigate the effect, you can increase the capacity of the network by increasing netwidth to 512.
  • decay_iteration: number of iteartion in initialization stage. Data-driven losses will decay every 1000 * decay_iteration steps. We have updated code to automatically calculate number of decay iterations.
  • no_ndc: our current implementation only supports reconstruction in NDC space, meaning it only works for forward-facing scene, same as original NeRF.
  • use_motion_mask, num_extra_sample: whether to use estimated coarse motion segmentation mask to perform hard-mining sampling during initialization stage, and how many extra samples during initialization stage.
  • w_depth, w_optical_flow: weight of losses for single-view depth and geometry consistency priors described in the paper. Weights of (0.4, 0.2) or (0.2, 0.1) usually work the best for most of the videos.
  • If you see signifacnt ghosting result in the final rendering, you might try the suggestion from link

Evaluation on the Dynamic Scene Dataset

  1. Download Dynamic Scene dataset "dynamic_scene_data_full.zip" from link

  2. Download pretrained model "dynamic_scene_pretrained_models.zip" from link, unzip and put them in the folder "nsff_exp/logs/"

  3. Run the following command for each scene to get quantitative results reported in the paper:

   # Usage: configs/config_xxx.txt indicates each scene name such as config_balloon1-2.txt in nsff/configs
   python evaluation.py --config configs/config_xxx.txt
  • Note: you have to use modified LPIPS implementation included in this branch in order to measure LIPIS error for dynamic region only as described in the paper.

Acknowledgment

The code is based on implementation of several prior work:

License

This repository is released under the MIT license.

Citation

If you find our code/models useful, please consider citing our paper:

@InProceedings{li2020neural,
  title={Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes},
  author={Li, Zhengqi and Niklaus, Simon and Snavely, Noah and Wang, Oliver},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Zhengqi Li
CS Ph.D. student at Cornell Tech, Cornell University
Zhengqi Li
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022