Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Overview

Informative-tracking-benchmark

Informative tracking benchmark (ITB)

  • higher diversity. It contains 9 representative scenarios and 180 diverse videos.
  • more effective. Sequences are carefully selected based on chellening level, discriminative strength, and density of appearance variations.
  • more efficient. It is constructed with 7% out of 1.2 M frames allows saving 93% of evaluation time (3,625 seconds on informative benchmark vs. 50,000 seconds on all benchmarks) for a real-time tracker (24 frames per second).
  • more rigorous comparisons. (All the baseline methods are re-evaluated using the same protocol, e.g., using the same training set and finetuning hyper-parameters on a specified validate set).

An Informative Tracking Benchmark, Xin Li, Qiao Liu, Wenjie Pei, Qiuhong Shen, Yaowei Wang, Huchuan Lu, Ming-Hsuan Yang [Paper]

News:

  • 2021.12.09 The informative tracking benchmark is released.

Introduction

Along with the rapid progress of visual tracking, existing benchmarks become less informative due to redundancy of samples and weak discrimination between current trackers, making evaluations on all datasets extremely time-consuming. Thus, a small and informative benchmark, which covers all typical challenging scenarios to facilitate assessing the tracker performance, is of great interest. In this work, we develop a principled way to construct a small and informative tracking benchmark (ITB) with 7% out of 1.2 M frames of existing and newly collected datasets, which enables efficient evaluation while ensuring effectiveness. Specifically, we first design a quality assessment mechanism to select the most informative sequences from existing benchmarks taking into account 1) challenging level, 2) discriminative strength, 3) and density of appearance variations. Furthermore, we collect additional sequences to ensure the diversity and balance of tracking scenarios, leading to a total of 20 sequences for each scenario. By analyzing the results of 15 state-of-the-art trackers re-trained on the same data, we determine the effective methods for robust tracking under each scenario and demonstrate new challenges for future research direction in this field.

Dataset Samples

Dataset Download (8.15 GB) and Preparation

[GoogleDrive] [BaiduYun (Code: intb)]

After downloading, you should prepare the data in the following structure:

ITB
 |——————Scenario_folder1
 |        └——————seq1
 |        |       └————xxxx.jpg
 |        |       └————groundtruth.txt
 |        └——————seq2
 |        └——————...
 |——————Scenario_folder2
 |——————...
 └------ITB.json

Both txt and json annotation files are provided.

Evaluation ToolKit

The evaluation tookit is wrote in python. We also provide the interfaces to the pysot and pytracking tracking toolkits.

You may follow the below steps to evaluate your tracker.

  1. Download this project:

    git clone [email protected]:XinLi-zn/Informative-tracking-benchmark.git
    
  2. Run your method with one of the following ways:

    base interface.
    Integrating your method into the base_toolkit/test_tracker.py file and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python test_tracker.py --dataset ITB --dataset_path /path-to/ITB
    

    pytracking interface. (pytracking link)
    Merging the files in pytracking_toolkit/pytracking to the counterpart files in your pytracking toolkit and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python run_tracker.py tracker_name tracker_parameter  --dataset ITB --descrip
    

    pysot interface. (pysot link)
    Putting the pysot_toolkit into your tracker folder and adding your tracker to the 'test.py' file in the pysot_toolkit. Then run the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python -u pysot_toolkit/test.py --dataset ITB --name 'tracker_name' 
    
  3. Compute the performance score:

    Here, we use the performance analysis codes in the pysot_toolkit to compute the score. Putting the pysot_toolkit into your tracker folder and use the below commmand to compute the performance score.

    python eval.py -p ./results-example/  -d ITB -t transt
    

    The above command computes the score of the results put in the folder of './pysot_toolkit/results-example/ITB/transt*/*.txt' and it shows the overall results and the results of each scenario.

Acknowledgement

We select several sequences with the hightest quality score (defined in the paper) from existing tracking datasets including OTB2015, NFS, UAV123, NUS-PRO, VisDrone, and LaSOT. Many thanks to their great work!

  • [OTB2015 ] Object track-ing benchmark. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. IEEE TPAMI, 2015.
  • [ NFS ] Need for speed: A benchmark for higher frame rate object tracking. Kiani Galoogahi, Hamed and Fagg, et al. ICCV 2017.
  • [ UAV123 ] A benchmark and simulator for uav tracking. Mueller, Matthias and Smith, Neil and Ghanem, Bernard. ECCV 2016.
  • [NUS-PRO ] Nus-pro: A new visual tracking challenge. Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, Shuicheng Yan. PAMI 2015.
  • [VisDrone] Visdrone-det2018: The vision meets drone object detection in image challenge results. Pengfei Zhu, Longyin Wen, et al. ECCVW 2018.
  • [ LaSOT ] Lasot: A high-quality benchmark for large-scale single object tracking. Heng Fan, Liting Lin, et al. CVPR 2019.

Contact

If you have any questions about this benchmark, please feel free to contact Xin Li at [email protected].

Owner
Xin Li
Xin Li
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022