Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Related tags

Deep LearningRawVSR
Overview

RawVSR

This repo contains the official codes for our paper:

Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Xiaohong Liu, Kangdi Shi, Zhe Wang, Jun Chen

plot

Accepted in IEEE Transactions on Image Processing

[Paper Download] [Video]


Dependencies and Installation

  1. Clone repo

    $ git clone https://github.com/proteus1991/RawVSR.git
  2. Install dependent packages

    $ cd RawVSR
    $ pip install -r requirements.txt
  3. Setup the Deformable Convolution Network (DCN)

    Since our RawVSR use the DCN for feature alignment extracted from different video frames, we follow the setup in EDVR, where more details can be found.

    $ python setup.py develop

    Note that the deform_conv_cuda.cpp and deform_conv_cuda_kernel.cu have been modified to solve compile errors in PyTorch >= 1.7.0. If your PyTorch version < 1.7.0, you may need to download the original setup code.

Introduction

  • train.py and test.py are the entry codes for training and testing the RawVSR.
  • ./data/ contains the codes for data loading.
  • ./dataset/ contains the corresponding video sequences.
  • ./dcn/ is the dependencies of DCN.
  • ./models/ contains the codes to define the network.
  • ./utils/ includes the utilities.
  • ./weight_checkpoint/ saves checkpoints and the best network weight.

Raw Video Dataset (RawVD)

Since we are not aware of the existence of publicly available raw video datasets, to train our RawVSR, a raw video dataset dubbled as RawVD is built. plot

In this dataset, we provide the ground-truth sRGB frames in folder 1080p_gt_rgb. Low-resolution (LR) Raw frames are in folder 1080p_lr_d_raw_2 and 1080p_lr_d_raw_4 in terms of different scale ratios. Their corresponding sRGB frames are in folder 1080p_lr_d_rgb_2 and 1080p_lr_d_rgb_4, where d in folder name stands for the degradations including defocus blurring and heteroscedastic Gaussian noise. We also released the original raw videos in Magic Lantern Video (MLV) format. The corresponding software to play it can be found here. Details can be found in Section 3 of our paper.

Quick Start

1. Testing

Make sure all dependencies are successfully installed.

Run test.py with --scale_ratio and save_image tags.

$ python test.py --scale_ratio 4 --save_image

The help of --scale_ratio and save_image tags is shown by running:

$ python test.py -h

If everything goes well, the following messages will appear in your bash:

--- Hyper-parameter default settings ---
train settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'lr': 0.0002, 'num_epochs': 100, 'N_frames': 7, 'n_workers': 12, 'batch_size': 24, 'GT_size': 256, 'LQ_size': 64, 'scale': 4, 'phase': 'train'}
val settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'N_frames': 7, 'n_workers': 12, 'batch_size': 2, 'phase': 'val', 'save_image': True}
network settings:
 {'nf': 64, 'nframes': 7, 'groups': 8, 'back_RBs': 4}
dataset settings:
 {'dataset_name': 'RawVD'}
--- testing results ---
store: 29.04dB
painting: 29.02dB
train: 28.59dB
city: 29.08dB
tree: 28.06dB
avg_psnr: 28.76dB
--- end ---

The RawVSR is tested on our elaborately-collected RawVD. Here the PSNR results should be the same as Table 1 in our paper.

2. Training

Run train.py without --save_image tag to reduce the training time.

$ python train.py --scale_ratio 4

If you want to change the default hyper-parameters (e.g., modifying the batch_size), simply go config.py. All network and training/testing settings are stored there.

Acknowledgement

Some codes (e.g., DCN) are borrowed from EDVR with modification.

Cite

If you use this code, please kindly cite

@article{liu2020exploit,
  title={Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference},
  author={Liu, Xiaohong and Shi, Kangdi and Wang, Zhe and Chen, Jun},
  journal={arXiv preprint arXiv:2008.10710},
  year={2020}
}

Contact

Should you have any question about this code, please open a new issue directly. For any other questions, you might contact me in email: [email protected].

Owner
Xiaohong Liu
Xiaohong Liu
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022