Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

Overview

SAPNet

This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

Updates:

Code will be updated before 2021/11/23 **Arxiv Link is available at https://arxiv.org/abs/2111.08892

Abstract

Deep learning algorithms have recently achieved promising deraining performances on both the natural and synthetic rainy datasets. As an essential low-level pre-processing stage, a deraining network should clear the rain streaks and preserve the fine semantic details. However, most existing methods only consider low-level image restoration. That limits their performances at high-level tasks requiring precise semantic information. To address this issue, in this paper, we present a segmentation-aware progressive network (SAPNet) based upon contrastive learning for single image deraining. We start our method with a lightweight derain network formed with progressive dilated units (PDU). The PDU can significantly expand the receptive field and characterize multi-scale rain streaks without the heavy computation on multi-scale images. A fundamental aspect of this work is an unsupervised background segmentation (UBS) network initialized with ImageNet and Gaussian weights. The UBS can faithfully preserve an image's semantic information and improve the generalization ability to unseen photos. Furthermore, we introduce a perceptual contrastive loss (PCL) and a learned perceptual image similarity loss (LPISL) to regulate model learning. By exploiting the rainy image and groundtruth as the negative and the positive sample in the VGG-16 latent space, we bridge the fine semantic details between the derained image and the groundtruth in a fully constrained manner. Comprehensive experiments on synthetic and real-world rainy images show our model surpasses top-performing methods and aids object detection and semantic segmentation with considerable efficacy.

Preparing Dataset

First, download training and testing dataset from either link BaiduYun OneDrive

Next, create new folders called dataset. Then create sub-folders called train and test under that folder. Finally, place the unzipped folders into ./datasets/train/ (training data) and ./datasets/test/ (testing data)

Training

Run the following script in terminal

python train.py

Testing

Run the following script in terminal

bash main.sh

Hyperparameters

General Hyperparameters

Name Type Default Description
preprocess bool False
batch_size int 12
epochs int 100
milestone int [30,50,80]
lr float 0.001
save_path str logs/SAPNet/Model11
save_freq int 1

Train/Test Hypeparameters

Name Type Default Description
test_data_path str datasets/test/Rain100H
output_path str results/Rain100H/Model11
data_path str datasets/train/RainTrainH
use_contrast bool True
use_seg_stage1 bool True
use_stage1 bool True
use_dilation bool True
recurrent_iter int 6
num_of_SegClass int 21

Contact

Please reach [email protected] for further questions. You can also open an issue (prefered) or a pull request in this Github repository

Acknowledgement

This repository is borrowed heavily from PreNet. Thanks for sharing!

TODO List

  • Upload Pretrained Weight
  • Add Visual Comparisons
  • Add References
  • Upload Arxiv Link
  • Upload BibTeX
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022