Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

Overview

PLOP: Learning without Forgetting for Continual Semantic Segmentation

Paper Conference

Vizualization on VOC 15-1

This repository contains all of our code. It is a modified version of Cermelli et al.'s repository.

@inproceedings{douillard2021plop,
  title={PLOP: Learning without Forgetting for Continual Semantic Segmentation},
  authors={Douillard, Arthur and Chen, Yifu and Dapogny, Arnaud and Cord, Matthieu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Requirements

You need to install the following libraries:

  • Python (3.6)
  • Pytorch (1.7.1)
  • torchvision (0.4.0)
  • tensorboardX (1.8)
  • apex (0.1)
  • matplotlib (3.3.1)
  • numpy (1.17.2)
  • inplace-abn (1.0.7)

Note also that apex seems to only work with some CUDA versions, therefore try to install Pytorch with the 9.2 or 10.0 CUDA versions, do:

conda install -y pytorch torchvision cudatoolkit=9.2 -c pytorch
cd apex
pip3 install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

Two scripts are available to download ADE20k and Pascal-VOC 2012, please see in the data folder. For Cityscapes, you need to do it yourself, because you have to ask "permission" to the holders; but be reassured, it's only a formality, you can get the link in a few days by mail.

Performance on VOC

How to perform training

The most important file is run.py, that is in charge to start the training or test procedure. To run it, simpy use the following command:

python -m torch.distributed.launch --nproc_per_node=<num_GPUs> run.py --data_root <data_folder> --name <exp_name> .. other args ..

The default is to use a pretraining for the backbone used, that is searched in the pretrained folder of the project. We used the pretrained model released by the authors of In-place ABN (as said in the paper), that can be found here: link. I've also upload those weights there: link.

Since the pretrained are made on multiple-gpus, they contain a prefix "module." in each key of the network. Please, be sure to remove them to be compatible with this code (simply rename them using key = key[7:]) (if you're working on single gpu). If you don't want to use pretrained, please use --no-pretrained.

There are many options (you can see them all by using --help option), but we arranged the code to being straightforward to test the reported methods. Leaving all the default parameters, you can replicate the experiments by setting the following options.

  • please specify the data folder using: --data_root <data_root>
  • dataset: --dataset voc (Pascal-VOC 2012) | ade (ADE20K)
  • task: --task <task>, where tasks are
    • 15-5, 15-5s, 19-1 (VOC), 100-50, 100-10, 50, 100-50b, 100-10b, 50b (ADE, b indicates the order)
  • step (each step is run separately): --step <N>, where N is the step number, starting from 0
  • (only for Pascal-VOC) disjoint is default setup, to enable overlapped: --overlapped
  • learning rate: --lr 0.01 (for step 0) | 0.001 (for step > 0)
  • batch size: --batch_size <24/num_GPUs>
  • epochs: --epochs 30 (Pascal-VOC 2012) | 60 (ADE20K)
  • method: --method <method name>, where names are
    • FT, LWF, LWF-MC, ILT, EWC, RW, PI, MIB

For all details please follow the information provided using the help option.

Example commands

LwF on the 100-50 setting of ADE20K, step 0:

python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name LWF --task 100-50 --step 0 --lr 0.01 --epochs 60 --method LWF

MIB on the 50b setting of ADE20K, step 2:

python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name MIB --task 100-50 --step 2 --lr 0.001 --epochs 60 --method MIB

LWF-MC on 15-5 disjoint setting of VOC, step 1:

python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name LWF-MC --task 15-5 --step 1 --lr 0.001 --epochs 30 --method LWF-MC

PLOP on 15-1 overlapped setting of VOC, step 1:

python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name PLOP --task 15-5s --overlapped --step 1 --lr 0.001 --epochs 30 --method FT --pod local --pod_factor 0.01 --pod_logits --pseudo entropy --threshold 0.001 --classif_adaptive_factor --init_balanced --pod_options "{"switch": {"after": {"extra_channels": "sum", "factor": 0.0005, "type": "local"}}}"

Once you trained the model, you can see the result on tensorboard (we perform the test after the whole training) or you can test it by using the same script and parameters but using the command

--test

that will skip all the training procedure and test the model on test data.

Or more simply you can use one of the provided script that will launch every step of a continual training.

For example, do

bash scripts/plop_15-1.sh

Note that you will need to modify those scripts to include the path where your data.

Comments
  • Extremely hard incremental scenario

    Extremely hard incremental scenario

    Thank you for your great work, PLOP!

    As your code, we can reproduce the performance almost the same as your paper.

    Additionally, we also conduct experiments on extremely hard incremental scenarios, such as 5-1 (16 steps) and 2-1 (19 steps).

    for this, we add below lines on task.py

    "5-1": {
            0 : [0, 1, 2, 3, 4, 5],
            1 : [6, ],
            2 : [7, ],
            3 : [8, ],
            4 : [9, ],
            5 : [10, ],
            6 : [11, ],
            7 : [12, ],
            8 : [13, ],
            9 : [14, ],
            10: [15, ],
            11: [16, ],
            12: [17, ],
            13: [18, ],
            14: [19, ],
            15: [20, ],
        },   
        "2-1":{
            0 : [0, 1, 2],
            1 : [3, ],
            2 : [4, ],
            3 : [5, ],
            4 : [6, ],
            5 : [7, ],
            6 : [8, ],
            7 : [9, ],
            8 : [10, ],
            9 : [11, ],
            10: [12, ],
            11: [13, ],
            12: [14, ],
            13: [15, ],
            14: [16, ],
            15: [17, ],
            16: [18, ],
            17: [19, ],
            18: [20, ],
        },   
    

    However, during the training, the loss is divergence to nan.

    I already noticed that someone suffers from the loss divergence issue https://github.com/arthurdouillard/CVPR2021_PLOP/issues/8 on 15-5 task, however, I can reproduce the performance on 15-5 task in my environmental settings. Also, MiB on these extremely hard scenarios was well trained without the loss divergence, however, PLOP showed the issue.

    Therefore, I wonder you also have the same issue in the extremely hard scenarios, 5-1 and 2-1. And, please tell me how can I solve that issue (e.g., which hyperparameter should be changed).

    Thanks.

    opened by qjadud1994 11
  • Model weights become NaN in step 1 on VOC

    Model weights become NaN in step 1 on VOC

    Hi, Thanks for your contribution. I have a problem when training PLOP on VOC dataset with setting 15-5. After successfully training the model at step 0, I trained the model at the next step. The model becomes NaN after few training iterations even at the first epoch.

    Since the model M0 can be trained without any problem, I doubt that the distilling the knowledge of M0 to M1 might lead to a divergence problem for M1.

    Following the papers, I used lr=0.01 for M0 and lr=0.001 for M1. Here is the setting I used. Step 0: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root /media/hieu/DATA/semantic_segmentation/PascalVOC12 --batch_size 12 --dataset voc --name PLOP --task 15-5 --overlap --step 0 --lr 0.01 --epochs 30 --method FT --pod local --pod_factor 0.01 --pod_logits --pseudo entropy --threshold 0.001 --classif_adaptive_factor --init_balanced

    Step 1: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root /media/hieu/DATA/semantic_segmentation/PascalVOC12 --batch_size 12 --dataset voc --name PLOP --task 15-5 --overlap --step 1 --lr 0.001 --epochs 30 --method FT --pod local --pod_factor 0.01 --pod_logits --pseudo entropy --threshold 0.001 --classif_adaptive_factor --init_balanced.

    opened by HieuPhan33 10
  • Loss is not converge

    Loss is not converge

    While I am reimplementing your code with your setting given in the scripts folder, I found the results are a bit lower than the paper results(2%-5%). When I check the tensorboard for the loss, I found that from step 1, the loss is not converging and some of them are NaN. image

    Have you ever run into this problem?

    opened by fred206968 7
  • Clarification regarding domain shift experiments on Cityscapes

    Clarification regarding domain shift experiments on Cityscapes

    Hi @arthurdouillard, I really enjoyed reading your work! Thanks for bringing in the domain shift aspect of CSS. I have the following doubts in the implementation of ILT, MiB and PLOP for the domain shift experiments on Cityscapes (Table 5):

    1. wrt PLOP: I'm assuming the pseudo labeling will not be applicable in these experiments as the label spaces are fixed in the domain incremental scenario. So do I just use the distillation loss along with regular cross-entropy? Is my understanding correct wrt using PLOP in a domain IL scenario?
    2. MiB modifies distillation and cross-entropy to tackle the background class shift issue. Since there is no such issue in the domain incremental scenario, doesn't their method get reduced to ILT (basically LwF)? I'm confused as to why there is a difference in the performance (For e.g. 59% for ILT and 61.5% for MiB in the 11-5 case).

    Also, is it possible to share the joint model (traditional segmentation model) mIoU you get for Cityscapes on DeeplabV3, ResNet101? (I couldn't find this in the paper and wanted to see the drop wrt the joint one).

    opened by prachigarg23 6
  • can't reproduce Ade20k and don't know the detail of Cityscapes.

    can't reproduce Ade20k and don't know the detail of Cityscapes.

    Hi, sorry to disturb but i have a few questions as followed.

    1. Maybe you have changed some details about the experiments over Cityscapes, since it seems like MiB cannot work on the Cityscapes because there are only GT without pseudo labels. I'd appreciate it if you can tell me what the exact details you have changed over these experiments.
    2. I cannot reproduce the performance that you mentioned in your paper about the Ade20k, having seen that you had reproduced the performance of your method over Cityscapes in another issue, I hope that you can reproduce it over Ade20k too and have a further discussion with me. Wish you good luck.
    opened by schuy1er 6
  • Reproduce 15-1 setup on Pascal VOC

    Reproduce 15-1 setup on Pascal VOC

    Describe the bug I tried to run the provided pascal VOC script using Apex optimization 01 and everything same as script except i was using a single GPU and hence changed the batch size to 24. But I got the following results

    | | 1-15 | 16-20 | all | |-------------|-------|-------|-------| | Paper | 65.12 | 21.11 | 54.64 | | Code results | 58.73 | 21.6 | 49.7 |

    To Reproduce start=date +%s`

    START_DATE=$(date '+%Y-%m-%d')

    PORT=$((9000 + RANDOM % 1000)) GPU=0 NB_GPU=1 DATA_ROOT=./data DATASET=voc TASK=15-5s NAME=PLOP METHOD=PLOP BATCH_SIZE=24 INITIAL_EPOCHS=30 EPOCHS=30 OPTIONS="--checkpoint checkpoints/step/"

    RESULTSFILE=results/${START_DATE}${DATASET}${TASK}_${NAME}.csv rm -f ${RESULTSFILE}

    CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --date ${START_DATE} --data_root ${DATA_ROOT} --overlap --batch_size ${BATCH_SIZE} --dataset ${DATASET} --name ${NAME} --task ${TASK} --step 0 --lr 0.01 --epochs ${INITIAL_EPOCHS} --method ${METHOD} --opt_level O1 ${OPTIONS} for step in 1 2 3 4 5 do CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --date ${START_DATE} --data_root ${DATA_ROOT} --overlap --batch_size ${BATCH_SIZE} --dataset ${DATASET} --name ${NAME} --task ${TASK} --step ${step} --lr 0.001 --epochs ${EPOCHS} --method ${METHOD} --opt_level O1 ${OPTIONS} done python3 average_csv.py ${RESULTSFILE}`

    opened by mostafaelaraby 5
  • Reproducing the experiments on Cityscapes

    Reproducing the experiments on Cityscapes

    We cannot reproduce the performance on Cityscapes. What are your training details? We get the last mIoU is 49.73 on 11-1 task. We set the initial learning rate as 0.01 and run 60 epochs. And we set the later learning rate as 0.001 and run 60 epochs. The batch size is set to 24.

    opened by zhangchbin 5
  • About apex=0.1

    About apex=0.1

    I config the same pytorch, torchvision and cuda version with you, however, I can not install apex=0.1. Can you tell you how to install it in detail? Thank you!

    opened by congwei45 4
  • predict and visualization

    predict and visualization

    Describe the bug Hi , I have one question about how to predict a picture when finish the training stage, in other words, how to visualize the segmentation results in your code. I have written a simple visualization .py file, but when I load the model , I found that the model did not load successfully. If it's convenient, I would appreciate it if you could share your predict code. We look forward to your answer, thanks

    To Reproduce

    Dataset: voc-2012 Setting: 19-1 Command used or script used:

    Expected behavior A clear and concise description of what you expected to happen.

    Additional context Add any other context about the problem here.

    opened by Liuhao-128 4
  • Cityscapes Dataset Preparation

    Cityscapes Dataset Preparation

    I'm struggling to reproduce results on CityScapes dataset like others already reported the issue. I found that in your paper you mentioned that with domain-incremental setting on CityScapes datasets you have used images from 21 cities in a particular order. However, after checking the dataset downloaded from www.cityscapes-dataset.com, i only can se 18 cities in train directory.

    Now my question is as followes:

    1. Where do you get images from those three extra cities, i.e. frankfurt, lindau, and munster.
    2. Could you please share more details on preparing CityScapes dataset

    Thanks for your time.

    opened by bit0123 3
  • Paper reproduction

    Paper reproduction

    Hello, I have run your code model on my server. I know your code has completed the training and prediction, but I can't find the prediction picture in the file. Only the predicted score, my deep learning ability is limited, so I ask you for help on how to get the segmented image in the paper. Thank you. My email: [email protected]

    opened by AI-student-wl 3
  • About visualiztion on ADE20K

    About visualiztion on ADE20K

    Describe the bug Hi, I have run the code on 50-50-50 setting on ade20k. I want to know how to visualize on the verification set. If you have the corresponding code, can you provide it?

    Thank you for your work and look forward to your reply

    To Reproduce

    Dataset: ADE20K Setting: 50-50-50

    opened by Liuhao-128 0
  • Trying to reproduce cityscapes domain results

    Trying to reproduce cityscapes domain results

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce

    Dataset: City-scapes domain Setting: 1-1 task Command used or script used: I cloned the github repository and I was able to reproduce the results for FT(fine-tuning) method using the scripts. When I tried using PLOP method, after the task 0, I am getting the following error. image

    opened by anouskashrestha 0
  • Try to reproduce voc 10-1 results

    Try to reproduce voc 10-1 results

    I am trying to reproduce 10-1 results as shown in the table below. I notice a large gap of the old class mIoU between my reproduce result (38.82) and your reported one (44.03), roughly 5 percent points. I am wondering what will cause this problem. I run the experiments with 2 x RTX 3090 GPU. I follow your original implementation except for the cuda version. I am using cuda 11.3 because cuda 10.2 does not support RTX 3090. Does it matter?

    Btw, may I know what GPU model do you use? I think it requires to have at least 16G to hold a batch of 12 on each device and needs to support cuda 10.2 as well. V100? I guess.

    Meanwhile, I notice a weird phenomenon that background performance drops drastically starting from the 8-th step and becomes 0 at 9-th step. I think this harms the old class performance a lot. Do you have a similar issue?

    Thanks.

    | step | background | aeroplane | bicycle | bird | boat | bottle | bus | car | cat | chair | cow | diningtable | dog | horse | motorbike | person | pottedplant | sheep | sofa | train | tvmonitor | 0-10 | 11-20 | all | |:----:|:----------:|:---------:|:-------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-----------:|:------:|:------:|:---------:|:------:|:-----------:|:------:|:-----:|:-----:|:---------:|:------:|:------:|:------:| | 0 | 95.19% | 89.84% | 41.01% | 89.74% | 72.24% | 85.02% | 95.29% | 88.26% | 93.30% | 43.15% | 92.25% | x | x | x | x | x | x | x | x | x | x | 80.48% | - | 80.48% | | 1 | 92.01% | 87.25% | 35.76% | 82.88% | 67.51% | 79.44% | 94.49% | 82.55% | 88.44% | 46.25% | 90.74% | 37.38% | x | x | x | x | x | x | x | x | x | 77.03% | 37.38% | 73.73% | | 2 | 89.16% | 84.00% | 34.32% | 83.28% | 63.44% | 68.45% | 92.90% | 82.54% | 82.37% | 31.68% | 84.48% | 24.68% | 62.59% | x | x | x | x | x | x | x | x | 72.42% | 43.64% | 67.99% | | 3 | 83.97% | 79.07% | 31.92% | 73.50% | 53.19% | 51.06% | 91.18% | 80.90% | 76.82% | 17.40% | 65.26% | 18.69% | 3.93% | 22.11% | x | x | x | x | x | x | x | 64.02% | 14.91% | 53.50% | | 4 | 79.89% | 77.61% | 35.83% | 74.77% | 47.67% | 49.70% | 90.73% | 78.02% | 79.41% | 13.21% | 65.81% | 17.77% | 9.43% | 20.52% | 33.81% | x | x | x | x | x | x | 62.97% | 20.38% | 51.61% | | 5 | 84.56% | 84.34% | 37.88% | 81.72% | 53.81% | 56.75% | 90.72% | 82.48% | 82.98% | 13.77% | 69.20% | 0.57% | 0.00% | 26.10% | 58.37% | 69.71% | x | x | x | x | x | 67.11% | 30.95% | 55.81% | | 6 | 82.18% | 80.07% | 37.93% | 69.65% | 49.38% | 55.32% | 89.74% | 81.63% | 77.15% | 14.10% | 61.90% | 0.48% | 0.00% | 23.42% | 51.28% | 64.77% | 5.04% | x | x | x | x | 63.55% | 24.16% | 49.65% | | 7 | 80.42% | 77.61% | 36.88% | 50.15% | 42.00% | 53.55% | 75.10% | 80.31% | 74.55% | 10.30% | 20.94% | 0.05% | 0.00% | 24.42% | 50.90% | 57.63% | 0.00% | 19.33% | x | x | x | 54.71% | 21.76% | 41.90% | | 8 | 44.45% | 71.53% | 35.75% | 51.99% | 44.17% | 50.20% | 80.98% | 76.45% | 69.19% | 29.32% | 40.46% | 0.18% | 0.00% | 22.80% | 51.03% | 71.25% | 0.00% | 15.88% | 3.26% | x | x | 54.04% | 20.55% | 39.94% | | 9 | 0.55% | 61.80% | 35.53% | 51.15% | 44.62% | 50.52% | 69.98% | 77.75% | 57.82% | 9.92% | 16.76% | 0.05% | 0.00% | 23.56% | 46.89% | 62.95% | 0.00% | 7.37% | 1.49% | 2.27% | x | 43.31% | 16.06% | 31.05% | | 10 | 0.00% | 50.48% | 32.40% | 38.14% | 40.64% | 51.90% | 62.86% | 69.76% | 56.53% | 17.47% | 6.83% | 0.02% | 0.00% | 23.25% | 53.95% | 66.92% | 0.00% | 1.73% | 1.67% | 0.04% | 2.60% | 38.82% | 15.02% | 27.49% |

    opened by Ze-Yang 3
  • ade 100-10 reproduce

    ade 100-10 reproduce

    i used the script you gave and i only got 24.xx final mIoU, i don't know if it is related to specific seed?

    by the way, due to the limitation of gpu memory, i used 4 gpus with 4 batch each gpu, which was equal to total batch size of 24, and the bn is iabc_sync, i thought that 4 gpus is not a issue?

    any idea how i can reproduce your ade 100-10 results?

    opened by zhaoedf 3
  • The weight file is corrupted

    The weight file is corrupted

    I click the link and it shows that the weight file is damaged. What is the reason? Can I upload it again? I am working on my graduation project and looking forward to your reply. Thank you! Expected behavior A clear and concise description of what you expected to happen.

    Additional context Add any other context about the problem here.

    opened by gjiee 0
Releases(v1.01)
Owner
Arthur Douillard
PhD Student @ Sorbonne, Research Scientist @ Heuritech, Lecturer @ EPITA
Arthur Douillard
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022