A set of tools to analyse the output from TraDIS analyses

Overview

QuaTradis (Quadram TraDis)

A set of tools to analyse the output from TraDIS analyses

Contents

Introduction

The QuaTradis pipeline provides software utilities for the processing, mapping, and analysis of transposon insertion sequencing data. The pipeline was designed with the data from the TraDIS sequencing protocol in mind, but should work with a variety of transposon insertion sequencing protocols as long as they produce data in the expected format.

For more information on the TraDIS method, see http://bioinformatics.oxfordjournals.org/content/32/7/1109 and http://genome.cshlp.org/content/19/12/2308.

Installation

QuaTradis has the following dependencies:

Required dependencies

  • bwa
  • smalt
  • samtools
  • tabix

There are a number of ways to install QuaTradis and details are provided below. If you encounter an issue when installing QuaTradis please contact your local system administrator.

Bioconda

Install conda and enable the bioconda channel.

conda install -c bioconda quatradis=xxx

Docker

QuaTradis can be run in a Docker container. First install Docker, then pull the QuaTradis image from dockerhub:

docker pull quadraminstitute/quatradis

To use QuaTradis use a command like this (substituting in your directories), where your files are assumed to be stored in /home/ubuntu/data:

docker run --rm -it -v /home/ubuntu/data:/data quadraminstitute/quatradis bacteria_tradis -h

Running the tests

The test can be run with pytest from the tests directory. Alternatively you can use the make target from the top-level directory:

make test

Usage

QuaTradis provides functionality to:

  • detect TraDIS tags in a BAM file
  • add the tags to the reads
  • filter reads in a FastQ file containing a user defined tag
  • remove tags
  • map to a reference genome
  • create an insertion site plot file

The functions are available as standalone scripts or as perl modules.

Scripts

Executable scripts to carry out most of the listed functions are available in the bin:

  • check_tradis_tags - Prints 1 if tags are present in alignment file, prints 0 if not.
  • add_tradis_tags - Generates a BAM file with tags added to read strings.
  • filter_tradis_tags - Create a fastq file containing reads that match the supplied tag
  • remove_tradis_tags - Creates a fastq file containing reads with the supplied tag removed from the sequences
  • tradis_plot - Creates an gzipped insertion site plot
  • bacteria_tradis - Runs complete analysis, starting with a fastq file and produces mapped BAM files and plot files for each file in the given file list and a statistical summary of all files. Note that the -f option expects a text file containing a list of fastq files, one per line. This script can be run with or without supplying tags.

Note that default parameters are for comparative experiments, and will need to be modified for gene essentiality studies.

A help menu for each script can be accessed by running the script by adding with "--help".

Analysis Scripts

Three scripts are provided to perform basic analysis of TraDIS results in bin:

  • tradis_gene_insert_sites - Takes genome annotation in embl format along with plot files produced by bacteria_tradis and generates tab-delimited files containing gene-wise annotations of insert sites and read counts.
  • tradis_essentiality.R - Takes a single tab-delimited file from tradis_gene_insert_sites to produce calls of gene essentiality. Also produces a number of diagnostic plots.
  • tradis_comparison.R - Takes tab files to compare two growth conditions using edgeR. This analysis requires experimental replicates.

License

QuaTradis is free software, licensed under GPLv3.

Feedback/Issues

Please report any issues to the issues page or email [email protected]

Citation

If you use this software please cite:

"The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries", Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, Langridge G, Quail MA, Keane JA, Parkhill J. Bioinformatics. 2016 Apr 1;32(7):1109-11. doi: 10.1093/bioinformatics/btw022. Epub 2016 Jan 21.

Comments
  • fix channel order in readme

    fix channel order in readme

    Channel order is important for bioconda to work correctly -- the conda-forge has to come first (which means higher priority when specified on the command line with -c). That might be why some users are getting pysam issues requiring a workaround.

    FYI might also want to consider suggesting --strict-channel-priority, see the new bioconda docs.

    opened by daler 1
  • Fixes for albatradis compatibility

    Fixes for albatradis compatibility

    Fixing name of analysis output files for consumption by albatradis.

    Fixing mistake when creating gene names during insertion site analysis.. Shouldn't have ignored underscores in the name.

    opened by maplesond 0
  • requirements.txt should not list bgzip

    requirements.txt should not list bgzip

    A followup to the discussion on the Bioconda PR: The requirements.txt file that you are using should not list bgzip. Names in requirements.txt refer to packages on PyPI, so if you list bgzip, you actually pull in a Python package named bgzip (that is meant to be used via import bgzip from within Python). It will not give you the bgzip binary that your project actually seems to want.

    You cannot list non-Python dependencies in requirements.txt so you can only list that dependency in the Conda recipe.

    opened by marcelm 0
  • Fixing problems running the job in docker.

    Fixing problems running the job in docker.

    The issue was that the mapping stage outputs files to the current working directory which may not have user permissions. The fix is to make sure mapping logs are output to the same place as all other output files.

    opened by maplesond 0
  • Nextflow pipeline to replace bacteria_tradis, and implementation of tradis_gene_insert_sites

    Nextflow pipeline to replace bacteria_tradis, and implementation of tradis_gene_insert_sites

    Adding nextflow to handle processing of multiple fastq files (similar to bacteria_tradis).

    Add the tradis_gene_insert_sites script, and associated functions under isp_analyse. Although there are still some very small diffs between this and old biotradis script in terms of ins_index and ins_count, which I still need to investigate.

    Renamed and refactored a few things.

    Added a few scripts to get closer to feature parity with old BioTradis.

    Tidied up README.

    opened by maplesond 0
  • problem with running tradis pipeline multiple

    problem with running tradis pipeline multiple

    Hello,

    When I try to run following command using quatradis:

    tradis pipeline multiple -v -n 12 -o quatradis_out fastqs_filtered_sizecut_all.txt genome.fa

    this error appears: Traceback (most recent call last): File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 293, in main() File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 285, in main args.func(args) File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 202, in run_multiple_pipeline tradis.run_multi_tradis(args.fastqs, args.reference, File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/site-packages/quatradis/tradis.py", line 142, in run_multi_tradis pipeline = find_pipeline_file() File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/site-packages/quatradis/tradis.py", line 101, in find_pipeline_file if os.path.exists(exe_path): File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/genericpath.py", line 19, in exists os.stat(path) TypeError: stat: path should be string, bytes, os.PathLike or integer, not NoneType

    What I'm doing wrong?

    The same input files work smoothly in bacteria_tradis.

    Bests, Jan

    opened by gaworj 1
Owner
Quadram Institute Bioscience
Quadram Institute Bioscience
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022