A variant of LinUCB bandit algorithm with local differential privacy guarantee

Overview

Contents

LDP LinUCB

Locally Differentially Private (LDP) LinUCB is a variant of LinUCB bandit algorithm with local differential privacy guarantee, which can preserve users' personal data with theoretical guarantee.

Paper: Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, Liwei Wang. "Locally Differentially Private (Contextual) Bandits Learning." Advances in Neural Information Processing Systems. 2020.

Model Architecture

The server interacts with users in rounds. For a coming user, the server first transfers the current model parameters to the user. In the user side, the model chooses an action based on the user feature to play (e.g., choose a movie to recommend), and observes a reward (or loss) value from the user (e.g., rating of the movie). Then we perturb the data to be transferred by adding Gaussian noise. Finally, the server receives the perturbed data and updates the model. Details can be found in the original paper.

Dataset

Note that you can run the scripts based on the dataset mentioned in original paper. In the following sections, we will introduce how to run the scripts using the related dataset below.

Dataset used: MovieLens 100K

  • Dataset size:5MB, 100,000 ratings (1-5) from 943 users on 1682 movies.
  • Data format:csv/txt files

Environment Requirements

Script Description

Script and Sample Code

├── model_zoo
    ├── README.md                                // descriptions about all the models
    ├── research
        ├── rl
            ├── ldp_linucb
                ├── README.md                    // descriptions about LDP LinUCB
                ├── scripts
                │   ├── run_train_eval.sh        // shell script for running on Ascend
                ├── src
                │   ├── dataset.py               // dataset for movielens
                │   ├── linucb.py                // model
                ├── train_eval.py                // training script
                ├── result1.png                  // experimental result
                ├── result2.png                  // experimental result

Script Parameters

  • Parameters for preparing MovieLens 100K dataset

    'num_actions': 20         # number of candidate movies to be recommended
    'rank_k': 20              # rank of rating matrix completion
  • Parameters for LDP LinUCB, MovieLens 100K dataset

    'epsilon': 8e5            # privacy parameter
    'delta': 0.1              # privacy parameter
    'alpha': 0.1              # failure probability
    'iter_num': 1e6           # number of iterations

Launch

  • running on Ascend

    python train_eval.py > result.log 2>&1 &

The python command above will run in the background, you can view the results through the file result.log.

The regret value will be achieved as follows:

--> Step: 0, diff: 348.662, current_regret: 0.000, cumulative regret: 0.000
--> Step: 1, diff: 338.457, current_regret: 0.000, cumulative regret: 0.000
--> Step: 2, diff: 336.465, current_regret: 2.000, cumulative regret: 2.000
--> Step: 3, diff: 327.337, current_regret: 0.000, cumulative regret: 2.000
--> Step: 4, diff: 325.039, current_regret: 2.000, cumulative regret: 4.000
...

Model Description

The original paper assumes that the norm of user features is bounded by 1 and the norm of rating scores is bounded by 2. For the MovieLens dataset, we normalize rating scores to [-1,1]. Thus, we set sigma in Algorithm 5 to be $$4/epsilon * sqrt(2 * ln(1.25/delta))$$.

Performance

The performance for different privacy parameters:

  • x: number of iterations
  • y: cumulative regret

Result1

The performance compared with optimal non-private regret O(sqrt(T)):

  • x: number of iterations
  • y: cumulative regret divided by sqrt(T)

Result2

Description of Random Situation

In train_eval.py, we randomly sample a user at each round. We also add Gaussian noise to the date being transferred.

ModelZoo Homepage

Please check the official homepage.

You might also like...
Open source home automation that puts local control and privacy first
Open source home automation that puts local control and privacy first

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Open source home automation that puts local control and privacy first.
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

A playable version of Chess – classic two-player, various AI levels, and the crazyhouse variant! Written in Python 3

A playable version of Chess – classic two-player, various AI levels, and the crazyhouse variant! Written in Python 3. Requires the installation of PIL/Pillow and Requests

Minimalistic generic chess variant GUI using pyffish and PySimpleGUI, based on the PySimpleGUI Chess Demo

FairyFishGUI Minimalistic generic chess variant GUI using pyffish and PySimpleGUI, based on the PySimpleGUI Chess Demo. Supports all chess variants su

A variant caller for the GBA gene using WGS data

Gauchian: WGS-based GBA variant caller Gauchian is a targeted variant caller for the GBA gene based on a whole-genome sequencing (WGS) BAM file. Gauch

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Implementation of the Transformer variant proposed in
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Pipenv-local-deps-repro - Reproduction of a local transitive dependency on pipenv

Reproduction of the pipenv bug with transitive local dependencies. Clone this re

A simple python script to dump remote files through a local file read or local file inclusion web vulnerability.
A simple python script to dump remote files through a local file read or local file inclusion web vulnerability.

A simple python script to dump remote files through a local file read or local file inclusion web vulnerability. Features Dump a single file w

Official code for Score-Based Generative Modeling through Stochastic Differential Equations
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Code for
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Releases(v1.1.0)
Owner
Weiran Huang
Codes for papers
Weiran Huang
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021