Self-Regulated Learning for Egocentric Video Activity Anticipation

Related tags

Deep LearningSRL
Overview

Self-Regulated Learning for Egocentric Video Activity Anticipation

Introduction

This is a Pytorch implementation of the model described in our paper:

Z. Qi, S. Wang, C. Su, L. Su, Q. Huang, and Q. Tian. Self-Regulated Learning for Egocentric Video Activity Anticipation. TPAMI 2021.

Dependencies

  • Pytorch >= 1.0.1
  • Cuda 9.0.176
  • Cudnn 7.4.2
  • Python 3.6.8

Data

EPIC-Kitchens dataset

For the raw data of the EPIC-Kitchens dataset, please refer to https://github.com/epic-kitchens/download-scripts to download.

For the three modality features (rgb, flow, obj), please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

EGTEA Gaze+ dataset

For the raw data of the EGTEA Gaze+ dataset, please refer to http://cbs.ic.gatech.edu/fpv/ to download.

For the extracted features, please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

50 Salads dataset

For the raw data of the 50 Salads dataset, please refer to http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/ to download.

For the extracted features, please refer to https://github.com/colincsl/TemporalConvolutionalNetworks to download. After downloading, put them in the folder './data'.

Breakfast dataset

For the raw data of the Breakfast dataset, please refer to https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/ to download.

For the extraced I3D features, please download from Baidu passward: 'wub3' or Google Drive. After downloading, put them in the folder './data'.

Train for Epic-Kitchen dataset

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --wd 1e-5 --lr 0.1 --reinforce_verb_weight 0.01 --reinforce_noun_weight 0.01 --revision_weight 0.8 --mode train --modality rgb --hidden 1024 --feat_in 1024

Silimar commonds can be used for flow or obj features.

Validation for Epic-Kitchen dataset

Please download the pre-trained model weigths from Baidu passward: 'wub3' or Google Drive, and put them in the folder './results/EPIC/base_srl/pre_trained/'.

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality rgb --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For flow feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality flow --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For obj feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality obj --hidden 352 --feat_in 352 --resume_timestamp pre_trained

For three modality features, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality fusion --resume_timestamp pre_trained

Citation

Please cite our paper if you use this code in your own work:

@article{qi2021self,
  title={Self-Regulated Learning for Egocentric Video Activity Anticipation},
  author={Qi, Zhaobo and Wang, Shuhui and Su, Chi and Su, Li and Huang, Qingming and Tian, Qi},
  journal={IEEE Transactions on Pattern Analysis \& Machine Intelligence},
  number={01},
  pages={1--1},
  year={2021},
  publisher={IEEE Computer Society}
}

Concat

If you have any problem about our code, feel free to contact

Owner
qzhb
Video Understanding
qzhb
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022