Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Overview

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments

This work presents an approach to explainable navigation under uncertainty.

This is the code release associated with the NeurIPS 2021 paper Generating High-Quality Explanations for Navigation in Partially-Revealed Environments. In this repository, we provide all the code, data, and simulation environments necessary to reproduce our results. These results include (1) training, (2) large-scale evaluation, (3) explaining robot behavior, and (4) interveneing-via-explaining. Here we show an example of an explanation automatically generated by our approach in one of our simulated environments, in which the green path on the ground indicates a likely route to the goal:

An example explanation automatically generated by our approach in our simulated 'Guided Maze' environment.

@inproceedings{stein2021xailsp,
  title = {Generating High-Quality Explanations for Navigation in Partially-Revealed Environments},
  author = {Gregory J. Stein},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = 2021,
  keywords = {explainability; planning under uncertainty; subgoal-based planning; interpretable-by-design},
}

Getting Started

We use Docker (with the Nvidia runtime) and GNU Make to run our code, so both are required to run our code. First, docker must be installed by following the official docker install guide (the official docker install guide). Second, our docker environments will require that the NVIDIA docker runtime is installed (via nvidia-container-toolkit. Follow the install instructions on the nvidia-docker GitHub page to get it.

Generating Explanations

We have provided a make target that generates two explanations that correspond to those included in the paper. Running the following make targets in a command prompt will generate these:

# Build the repo
make build
# Generate explanation plots
make xai-explanations

For each, the planner is run for a set number of steps and an explanation is generated by the agent and its learned model to justify its behavior compared to what the oracle planner specifies as the action known to lead to the unseen goal. A plot will be generated for each of the explanations and added to ./data/explanations.

Re-Running Results Experiments

We also provide targets for re-running the results for each of our simulated experimental setups:

# Build the repo
make build

# Ensure data timestamps are in the correct order
# Only necessary on the first pass
make fix-target-timestamps

# Maze Environments
make xai-maze EXPERIMENT_NAME=base_allSG
make xai-maze EXPERIMENT_NAME=base_4SG SP_LIMIT_NUM=4
make xai-maze EXPERIMENT_NAME=base_0SG SP_LIMIT_NUM=0

# University Building (floorplan) Environments
make xai-floorplan EXPERIMENT_NAME=base_allSG
make xai-floorplan EXPERIMENT_NAME=base_4SG SP_LIMIT_NUM=4
make xai-floorplan EXPERIMENT_NAME=base_0SG SP_LIMIT_NUM=0

# Results Plotting
make xai-process-results

(This can also be done by running ./run.sh)

This code will build the docker container, do nothing (since the results already exist), and then print out the results. GNU Make is clever: it recognizes that the plots already exist in their respective locations for each of the experiments and, as such, it does not run any code. To save on space to meet the 100MB size requirements, the results images for each experiment have been downsampled to thumbnail size. If you would like to reproduce any of our results, delete the plots of interest in the results folder and rerun the above code; make will detect which plots have been deleted and reproduce them. All results plots can be found in their respective folder in ./data/results.

The make commands above can be augmented to run the trials in parallel, by adding -jN (where N is the number of trials to be run in parallel) to each of the Make commands. On our NVIDIA 2060 SUPER, we are limited by GPU RAM, and so we limit to N=4. Running with higher N is possible but sometimes our simulator tries to allocate memory that does not exist and will crash, requiring that the trial be rerun. It is in principle possible to also generate data and train the learned planners from scratch, though (for now) this part of the pipeline has not been as extensively tested; data generation consumes roughly 1.5TB of disk space, so be sure to have that space available if you wish to run that part of the pipeline. Even with 4 parallel trials, we estimate that running all the above code from scratch (including data generation, training, and evaluation) will take roughly 2 weeks, half of which is evaluation.

Code Organization

The src folder contains a number of python packages necessary for this paper. Most of the algorithmic code that reflects our primary research contributions is predominantly spread across three files:

  • xai.planners.subgoal_planner The SubgoalPlanner class is the one which encapsulates much of the logic for deciding where the robot should go including its calculation of which action it should take and what is the "next best" action. This class is the primary means by which the agent collects information and dispatches it elsewhere to make decisions.
  • xai.learning.models.exp_nav_vis_lsp The ExpVisNavLSP defines the neural network along with its loss terms used to train it. Also critical are the functions included in this and the xai.utils.data file for "updating" the policies to reflect the newly estimated subgoal properties even after the network has been retrained. This class also includes the functionality for computing the delta subgoal properties that primarily define our counterfactual explanations. Virtuall all of this functionality heavily leverages PyTorch, which makes it easy to compute the gradients of the expected cost for each of the policies.
  • xai.planners.explanation This file defines the Explanation class that stores the subgoal properties and their deltas (computed via ExpVisNavLSP) and composes these into a natural language explanation and a helpful visualization showing all the information necessary to understand the agent's decision-making process.
Owner
RAIL Group @ George Mason University
Code for the Robotic Anticipatory Intelligence & Learning (RAIL) Group at George Mason University
RAIL Group @ George Mason University
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022