Pyramid Pooling Transformer for Scene Understanding

Related tags

Deep LearningP2T
Overview

Pyramid Pooling Transformer for Scene Understanding

Requirements:

  • torch 1.6+
  • torchvision 0.7.0
  • timm==0.3.2
  • Validated on torch 1.6.0, torchvision 0.7.0

Models Pretrained on ImageNet1K

Variants Input Size [email protected] [email protected] #Params (M) Pretrained Models
P2T-Tiny 224 x 224 78.1 94.1 11.1 Google Drive
P2T-Small 224 x 224 82.1 95.9 23.0 Google Drive
P2T-Base 224 x 224 83.0 96.2 36.2 Google Drive

Pretrained Models for Downstream tasks

To be updated.

Something Else

Note: we have prepared a stronger version of P2T. Since P2T is still in peer review, we will release the stronger P2T after the acceptance.

You might also like...
 Neural Scene Graphs for Dynamic Scene (CVPR 2021)
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object compositions and views.

A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Code for
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

Comments
  • How to load ImageNet1K pretrained weight to semantic segmentation model?

    How to load ImageNet1K pretrained weight to semantic segmentation model?

    Hello, thanks for open source!

    I use mmseg, and load weight from image classification result, it warns: WARNING - The model and loaded state dict do not match exactly missing keys in source state_dict: backbone.head.weight, backbone.head.bias unexpected key in source state_dict: cls_token, ln1.bias, ln1.weight, layers.0.ln1.bias, layers.0.ln1.weight, layers.0.ln2.bias, layers.0.ln2.weight, layers.0.ffn.layers.0.0.bias, layers.0.ffn.layers.0.0.weight, layers.0.ffn.layers.1.bias, layers.0.ffn.layers.1.weight, layers.0.attn.attn.out_proj.bias, layers.0.attn.attn.out_proj.weight, layers.0.attn.attn.in_proj_bias, layers.0.attn.attn.in_proj_weight, layers.1.ln1.bias, layers.1.ln1.weight, layers.1.ln2.bias, layers.1.ln2.weight, layers.1.ffn.layers.0.0.bias, layers.1.ffn.layers.0.0.weight, layers.1.ffn.layers.1.bias, layers.1.ffn.layers.1.weight, layers.1.attn.attn.out_proj.bias, layers.1.attn.attn.out_proj.weight ...... And the experimental results are terrible as the experiments initialize weight with random.

    So I load weight from ADE20K result, it work and warns: WARNING - The model and loaded state dict do not match exactly missing keys in source state_dict: backbone.head.weight, backbone.head.bias And the result is similar to the result you offer.

    Which weight should I load? ImageNet1K or ADE20K? Or should I modify the keys of weight in ImageNet1K to adapt the key in segmentation?

    opened by asd123pwj 8
  • Questions about your ablation studies

    Questions about your ablation studies

    Hello,

    I have some questions about your ablation studies of pyramid pooling. Could you detail about your baseline version in Table 9? First, you say that you replace P-MHSA with an MHSA with a single pooling operation, what is the detail about single pooling operation? Ex: Pooling Ratios? Second, do you compared your method with original MHSA?

    opened by pp00704831 3
  • P2T replaces PVT trunk bug

    P2T replaces PVT trunk bug

    When I replaced the PVT trunk with P2T in my code, I encountered an error :
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [16, 512, 3, 3]], which is output 0 of AdaptiveAvgPool2DBackward, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    opened by liu-tianxiang 2
  • P2T on ImageNet-22K?

    P2T on ImageNet-22K?

    Hi @yuhuan-wu , thank you for share the code of this excellent work! Have you trained P2T on ImageNet-22K dataset or any further plan to do it? If so, could you please share the pretrained model on ImageNet-22k?

    Thank you.

    opened by fyaft2012 1
Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022