Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Overview

Polyp-PVT

by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao.

This repo is the official implementation of "Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers".

1. Introduction

Polyp-PVT is initially described in arxiv.

Most polyp segmentation methods use CNNs as their backbone, leading to two key issues when exchanging information between the encoder and decoder: 1) taking into account the differences in contribution between different-level features; and 2) designing effective mechanism for fusing these features. Different from existing CNN-based methods, we adopt a transformer encoder, which learns more powerful and robust representations. In addition, considering the image acquisition influence and elusive properties of polyps, we introduce three novel modules, including a cascaded fusion module (CFM), a camouflage identification module (CIM), a and similarity aggregation module (SAM). Among these, the CFM is used to collect the semantic and location information of polyps from high-level features, while the CIM is applied to capture polyp information disguised in low-level features. With the help of the SAM, we extend the pixel features of the polyp area with high-level semantic position information to the entire polyp area, thereby effectively fusing cross-level features. The proposed model, named Polyp-PVT , effectively suppresses noises in the features and significantly improves their expressive capabilities.

Polyp-PVT achieves strong performance on image-level polyp segmentation (0.808 mean Dice and 0.727 mean IoU on ColonDB) and video polyp segmentation (0.880 mean dice and 0.802 mean IoU on CVC-300-TV), surpassing previous models by a large margin.

2. Framework Overview

3. Results

3.1 Image-level Polyp Segmentation

3.2 Image-level Polyp Segmentation Compared Results:

We also provide some result of baseline methods, You could download from Google Drive/Baidu Drive [code:nhhv], including our results and that of compared models.

3.3 Video Polyp Segmentation

3.4 Video Polyp Segmentation Compared Results:

We also provide some result of baseline methods, You could download from Google Drive/Baidu Drive [code:33ie], including our results and that of compared models.

4. Usage:

4.1 Recommended environment:

Python 3.8
Pytorch 1.7.1
torchvision 0.8.2

4.2 Data preparation:

Downloading training and testing datasets and move them into ./dataset/, which can be found in this Google Drive/Baidu Drive [code:dr1h].

4.3 Pretrained model:

You should download the pretrained model from Google Drive/Baidu Drive [code:w4vk], and then put it in the './pretrained_pth' folder for initialization.

4.4 Training:

Clone the repository:

git clone https://github.com/DengPingFan/Polyp-PVT.git
cd Polyp-PVT 
bash train.sh

4.5 Testing:

cd Polyp-PVT 
bash test.sh

4.6 Evaluating your trained model:

Matlab: Please refer to the work of MICCAI2020 (link).

Python: Please refer to the work of ACMMM2021 (link).

Please note that we use the Matlab version to evaluate in our paper.

4.7 Well trained model:

You could download the trained model from Google Drive/Baidu Drive [code:9rpy] and put the model in directory './model_pth'.

4.8 Pre-computed maps:

Google Drive/Baidu Drive [code:x3jc]

5. Citation:

@aticle{dong2021PolypPVT,
  title={Polyp-PVT: Polyp Segmentation with PyramidVision Transformers},
  author={Bo, Dong and Wenhai, Wang and Deng-Ping, Fan and Jinpeng, Li and Huazhu, Fu and Ling, Shao},
  journal={arXiv preprint arXiv:2108.06932},
  year={2021}
}

6. Acknowledgement

We are very grateful for these excellent works PraNet, EAGRNet and MSEG, which have provided the basis for our framework.

7. FAQ:

If you want to improve the usability or any piece of advice, please feel free to contact me directly ([email protected]).

8. License

The source code is free for research and education use only. Any comercial use should get formal permission first.

Owner
Deng-Ping Fan
Researcher (PI)
Deng-Ping Fan
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022