Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Overview

Introduction

Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models".

In this work, we demonstrate that existing self-supervised speech model such as HuBERT, wav2vec 2.0, CPC and TERA are vulnerable to membership inference attack (MIA) and thus could reveal sensitive informations related to the training data.

Requirements

  1. Python >= 3.6
  2. Install sox on your OS
  3. Install s3prl on your OS
git clone https://github.com/s3prl/s3prl
cd s3prl
pip install -e ./
  1. Install the specific fairseq
pip install [email protected]+https://github.com//pytorch/[email protected]#egg=fairseq

Preprocessing

First, extract the self-supervised feature of utterances in each corpus according to your needs.

Currently, only LibriSpeech is available.

BASE_PATH=/path/of/the/corpus
OUTPUT_PATH=/path/to/save/feature
MODEL=wav2vec2
SPLIT=train-clean-100 # you should extract train-clean-100, dev-clean, dev-other, test-clean, test-other

python preprocess_feature_LibriSpeech.py \
    --base_path $BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --split $SPLIT

Speaker-level MIA

After extracting the features, you can apply the attack against the models using either basic attack and improved attack.

Noted that you should run the basic attack to generate the .csv file with similarity scores before performing improved attack.

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-speaker-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-speaker-level-attack-similarity.csv"

python customized-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-speaker-similarity-model-${MODEL}.pt"

Utterance-level MIA

The process for utterance-level MIA is similar to that of speaker-level:

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-utterance-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-utterance-level-attack-similarity.csv"

python customized-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-utterance-similarity-model-${MODEL}.pt"

Citation

If you find our work useful, please cite:

Owner
Wei-Cheng Tseng
Wei-Cheng Tseng
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022