Tools for robust generative diffeomorphic slice to volume reconstruction

Related tags

Deep LearningRGDSVR
Overview

RGDSVR

Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR)

This repository provides tools to implement the methods in the manuscript ''Fetal MRI by robust deep generative prior reconstruction and diffeomorphic registration: application to gestational age prediction'', L Cordero-Grande, JE Ortuño-Fisac, A Uus, M Deprez, A Santos, JV Hajnal, and MJ Ledesma-Carbayo, arXiv, 2021.

The code has been developed in MATLAB and has the following structure:

./

contains a script to run a reconstruction of the provided example data: rgdsvr_example.m and another to import the Python code loadPythonDeepFetal.m.

./SVR

contains files to perform SVR reconstructions: svrAlternateMinimization.m, svrCG.m, svrDD.m, svrDecode.m, svrEncode.m, svrExcitationStructures.m, svrRearrangeAxes.m, svrSetUp.m, svrSliceWeights.m, svrSolveDPack.m, svrSolveDVolu.m, svrSolveTVolu.m.

./SVR/Common

contains common functions used by SVR methods: computeDeformableTransforms.m, finalizeConvergenceControl.m, initializeConvergenceControl.m, initializeDEstimation.m, modulateGradient.m, prepareLineSearch.m, updateRule.m.

./Alignment

contains functions for registration.

./Alignment/Elastic

contains functions for elastic registration: adAdjointOperator.m, adDualOperator.m, buildDifferentialOperator.m, buildGradientOperator.m, buildMapSpace.m, computeGradientHessianElastic.m, computeJacobian.m, computeRiemannianMetric.m, deformationGradientTensor.m, deformationGradientTensorSpace.m, elasticTransform.m, geodesicShooting.m, integrateReducedAdjointJacobi.m, integrateVelocityFields.m, invertElasticTransform.m, mapSpace.m, precomputeFactorsElasticTransform.m.

./Alignment/Metrics

contains functions for metrics used in registration: computeMetricDerivativeHessianRigid.m, metricFiltering.m, metricMasking.m, msdMetric.m.

./Alignment/Rigid

contains functions for rigid registration: convertRotation.m, factorizeHomogeneousMatrix.m, generatePrincipalAxesRotations.m, generateTransformGrids.m, jacobianQuaternionEuler.m, jacobianShearQuaternion.m, mapVolume.m, modifyGeometryROI.m, precomputeFactorsSincRigidTransformQuick.m, quaternionToShear.m, restrictTransform.m, rotationDistance.m, shearQuaternion.m, sincRigidTransformGradientQuick.m, sincRigidTransformQuick.m.

./Build

contains functions that replace, extend or adapt some MATLAB built-in functions: aplGPU.m, det2x2m.m, det3x3m.m, diagm.m, dynInd.m, eigm.m, eultorotm.m, gridv.m, ind2subV.m, indDim.m, matfun.m, multDimMax.m, multDimMin.m, multDimSum.m, numDims.m, parUnaFun.m, quattoeul.m, resPop.m, resSub.m, rotmtoquat.m, sub2indV.m, svdm.m.

./Control

contains functions to control the implementation and parameters of the algorithm: channelsDeepDecoder.m, parametersDeepDecoder.m, svrAlgorithm.m, useGPU.m.

./Methods

contains functions that implement generic methods for reconstruction: build1DCTM.m, build1DFTM.m, buildFilter.m, buildStandardDCTM.m, buildStandardDFTM.m, computeROI.m, extractROI.m, fctGPU.m, fftGPU.m, filtering.m, fold.m, generateGrid.m, ifctGPU.m, ifftGPU.m, ifold.m, mirroring.m, resampling.m.

./Python/deepfetal/deepfetal

contains python methods.

./Python/deepfetal/deepfetal/arch

contains python methods to build deep architectures: deepdecoder.py.

./Python/deepfetal/deepfetal/build

contains python methods with generic functions: bmul.py, complex.py, dynind.py, matcharrays.py, shift.py.

./Python/deepfetal/deepfetal/lay

contains python methods to build deep layers: encode.py, resample.py, sinc.py, sine.py, swish.py, tanh.py.

./Python/deepfetal/deepfetal/meth

contains python methods with generic deep methodologies: apl.py, resampling.py, tmtx.py, t.py.

./Python/deepfetal/deepfetal/opt

contains python methods for optimization: cost.py, fit.py.

./Python/deepfetal/deepfetal/unit

contains python methods to build deep units: atac.py decoder.py.

./Tools

contains auxiliary tools: findString.m, removeExtension.m, writenii.m.

./Tools/NIfTI_20140122

from https://uk.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image

NOTE 1: Example data provided in the dataset svr_inp_034.mat. For runs without changing the paths, it should be placed in folder

../RGDSVR-Data

Data generated when running the example script appears in this folder with names svr_out_034.mat and x_034.mat.

NOTE 2: Instructions for linking the python code in loadPythonDeepFetal.m.

NOTE 3: pathAnaconda variable in rgdsvr_example.m needs to point to parent of python environment.

NOTE 4: Example reconstruction takes about half an hour in a system equipped with a GPU NVIDIA GeForce RTX 3090.

You might also like...
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21) NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Hand Gesture Volume Control | Open CV | Computer Vision
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Comments
  • Run the algorithm when the slice order is unknown

    Run the algorithm when the slice order is unknown

    Hi, thanks for sharing the code. I wonder if it is possible to use the algorithm when the slice order is unknown, i.e., svr.ParZ.SlOr is unknown. I tried to set svr.ParZ.SlOr to an empty array, but got the following error: Inappropriate slice order identified, SKIPPING. Is there a solution to this problem?

    opened by daviddmc 0
Owner
Lucilio Cordero-Grande
Lucilio Cordero-Grande
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023