Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

Overview

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet.

use python main.py to start training.

PSM-Net

Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network" paper (CVPR 2018) by Jia-Ren Chang and Yong-Sheng Chen.

Official repository: JiaRenChang/PSMNet

model

Usage

1) Requirements

  • Python3.5+
  • Pytorch0.4
  • Opencv-Python
  • Matplotlib
  • TensorboardX
  • Tensorboard

All dependencies are listed in requirements.txt, you execute below command to install the dependencies.

pip install -r requirements.txt

2) Train

usage: train.py [-h] [--maxdisp MAXDISP] [--logdir LOGDIR] [--datadir DATADIR]
                [--cuda CUDA] [--batch-size BATCH_SIZE]
                [--validate-batch-size VALIDATE_BATCH_SIZE]
                [--log-per-step LOG_PER_STEP]
                [--save-per-epoch SAVE_PER_EPOCH] [--model-dir MODEL_DIR]
                [--lr LR] [--num-epochs NUM_EPOCHS]
                [--num-workers NUM_WORKERS]

PSMNet

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --logdir LOGDIR       log directory
  --datadir DATADIR     data directory
  --cuda CUDA           gpu number
  --batch-size BATCH_SIZE
                        batch size
  --validate-batch-size VALIDATE_BATCH_SIZE
                        batch size
  --log-per-step LOG_PER_STEP
                        log per step
  --save-per-epoch SAVE_PER_EPOCH
                        save model per epoch
  --model-dir MODEL_DIR
                        directory where save model checkpoint
  --lr LR               learning rate
  --num-epochs NUM_EPOCHS
                        number of training epochs
  --num-workers NUM_WORKERS
                        num workers in loading data

For example:

python train.py --batch-size 16 \
                --logdir log/exmaple \
                --num-epochs 500

3) Visualize result

This repository uses tensorboardX to visualize training result. Find your log directory and launch tensorboard to look over the result. The default log directory is /log.

tensorboard --logdir <your_log_dir>

Here are some of my training results (have been trained for 1000 epochs on KITTI2015):

disp

left

loss

error

4) Inference

usage: inference.py [-h] [--maxdisp MAXDISP] [--left LEFT] [--right RIGHT]
                    [--model-path MODEL_PATH] [--save-path SAVE_PATH]

PSMNet inference

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --left LEFT           path to the left image
  --right RIGHT         path to the right image
  --model-path MODEL_PATH
                        path to the model
  --save-path SAVE_PATH
                        path to save the disp image

For example:

python inference.py --left test/left.png \
                    --right test/right.png \
                    --model-path checkpoint/08/best_model.ckpt \
                    --save-path test/disp.png

5) Pretrained model

A model trained for 1000 epochs on KITTI2015 dataset can be download here. (I choose the best model among the 1000 epochs)

state {
    'epoch': 857,
    '3px-error': 3.466
}

Task List

  • Train
  • Inference
  • KITTI2015 dataset
  • Scene Flow dataset
  • Visualize
  • Pretained model

Contact

Email: [email protected]

Welcome for any discussions!

Owner
XIAOTIAN LIU
XIAOTIAN LIU
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021