Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Overview

Segmenter: Transformer for Semantic Segmentation

Figure 1 from paper

Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and Cordelia Schmid.

*Equal Contribution

Installation

Define os environment variables pointing to your checkpoint and dataset directory, put in your .bashrc:

export DATASET=/path/to/dataset/dir

Install PyTorch 1.9 then pip install . at the root of this repository.

To download ADE20K, use the following command:

python -m segm.scripts.prepare_ade20k $DATASET

Model Zoo

We release models with a Vision Transformer backbone initialized from the improved ViT models.

ADE20K

Segmenter models with ViT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-T-Mask/16 38.1 / 38.8 7M 512x512 52.4 model config log
Seg-S-Mask/16 45.3 / 46.9 27M 512x512 34.8 model config log
Seg-B-Mask/16 48.5 / 50.0 106M 512x512 24.1 model config log
Seg-L-Mask/16 51.3 / 53.2 334M 512x512 10.6 model config log
Seg-L-Mask/16 51.8 / 53.6 334M 640x640 - model config log

Segmenter models with DeiT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-B/16 47.1 / 48.1 87M 512x512 27.3 model config log
Seg-B-Mask/16 48.7 / 50.1 106M 512x512 24.1 model config log

Pascal Context

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-L-Mask/16 58.1 / 59.0 334M 480x480 - model config log

Inference

Download one checkpoint with its configuration in a common folder, for example seg_tiny_mask.

You can generate segmentation maps from your own data with:

python -m segm.inference --model-path seg_tiny_mask/checkpoint.pth -i images/ -o segmaps/ 

To evaluate on ADE20K, run the command:

# single-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --singlescale
# multi-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --multiscale

Train

Train Seg-T-Mask/16 on ADE20K on a single GPU:

python -m segm.train --log-dir seg_tiny_mask --dataset ade20k \
  --backbone vit_tiny_patch16_384 --decoder mask_transformer

To train Seg-B-Mask/16, simply set vit_base_patch16_384 as backbone and launch the above command using a minimum of 4 V100 GPUs (~12 minutes per epoch) and up to 8 V100 GPUs (~7 minutes per epoch). The code uses SLURM environment variables.

Logs

To plot the logs of your experiments, you can use

python -m segm.utils.logs logs.yml

with logs.yml located in utils/ with the path to your experiments logs:

root: /path/to/checkpoints/
logs:
  seg-t: seg_tiny_mask/log.txt
  seg-b: seg_base_mask/log.txt

Video Segmentation

Zero shot video segmentation on DAVIS video dataset with Seg-B-Mask/16 model trained on ADE20K.

BibTex

@article{strudel2021,
  title={Segmenter: Transformer for Semantic Segmentation},
  author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia},
  journal={arXiv preprint arXiv:2105.05633},
  year={2021}
}

Acknowledgements

The Vision Transformer code is based on timm library and the semantic segmentation training and evaluation pipeline is using mmsegmentation.

Owner
PhD student at Ecole Normale Supérieure and INRIA Paris
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022