A Deep Reinforcement Learning Framework for Stock Market Trading

Overview

DQN-Trading

This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two papers:

The deep reinforcement learning algorithm used here is Deep Q-Learning.

Acknowledgement

Requirements

Install pytorch using the following commands. This is for CUDA 11.1 and python 3.8:

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
  • python = 3.8
  • pandas = 1.3.2
  • numpy = 1.21.2
  • matplotlib = 3.4.3
  • cython = 0.29.24
  • scikit-learn = 0.24.2

TODO List

  • Right now this project does not have a code for getting user hyper-parameters from terminal and running the code. We preferred writing a jupyter notebook (Main.ipynb) in which you can set the input data, the model, along with setting the hyper-parameters.

  • The project also does not have a code to do Hyper-parameter search (its easy to implement).

  • You can also set the seed for running the experiments in the original code for training the models.

Developers' Guidelines

In this section, I briefly explain different parts of the project and how to change each. The data for the project downloaded from Yahoo Finance where you can search for a specific market there and download your data under the Historical Data section. Then you create a directory with the name of the stock under the data directory and put the .csv file there.

The DataLoader directory contains files to process the data and interact with the RL agent. The DataLoader.py loads the data given the folder name under Data folder and also the name of the .csv file. For this, you should use the YahooFinanceDataLoader class for using data downloaded from Yahoo Finance.

The Data.py file is the environment that interacts with the RL agent. This file contains all the functionalities used in a standard RL environment. For each agent, I developed a class inherited from the Data class that only differs in the state space (consider that states for LSTM and convolutional models are time-series, while for other models are simple OHLCs). In DataForPatternBasedAgent.py the states are patterns extracted using rule-based methods in technical analysis. In DataAutoPatternExtractionAgent.py states are Open, High, Low, and Close prices (plus some other information about the candle-stick like trend, upper shadow, lower shadow, etc). In DataSequential.py as it is obvious from the name, the state space is time-series which is used in both LSTM and Convolutional models. DataSequencePrediction.py was an idea for feeding states that have been predicted using an LSTM model to the RL agent. This idea is raw and needs to be developed.

Where ever we used encoder-decoder architecture, the decoder is the DQN agent whose neural network is the same across all the models.

The DeepRLAgent directory contains the DQN model without encoder part (VanillaInput) whose data loader corresponds to DataAutoPatternExtractionAgent.py and DataForPatternBasedAgent.py; an encoder-decoder model where the encoder is a 1d convolutional layer added to the decoder which is DQN agent under SimpleCNNEncoder directory; an encoder-decoder model where encoder is a simple MLP model and the decoder is DQN agent under MLPEncoder directory.

Under the EncoderDecoderAgent there exist all the time-series models, including CNN (two-layered 1d CNN as encoder), CNN2D (a single-layered 2d CNN as encoder), CNN-GRU (the encoder is a 1d CNN over input and then a GRU on the output of CNN. The purpose of this model is that CNN extracts features from each candlestick, thenGRU extracts temporal dependency among those extracted features.), CNNAttn (A two-layered 1d CNN with attention layer for putting higher emphasis on specific parts of the features extracted from the time-series data), and a GRU encoder which extracts temporal relations among candles. All of these models use DataSequential.py file as environment.

For running each agent, please refer to the Main.py file for instructions on how to run each agent and feed data. The Main.py file also has code for plotting results.

The Objects directory contains the saved models from our experiments for each agent.

The PatternDetectionCandleStick directory contains Evaluation.py file which has all the evaluation metrics used in the paper. This file receives the actions from the agents and evaluate the result of the strategy offered by each agent. The LabelPatterns.py uses rule-based methods to generate buy or sell signals. Also Extract.py is another file used for detecting wellknown candlestick patterns.

RLAgent directory is the implementation of the traditional RL algorithm SARSA-λ using cython. In order to run that in the Main.ipynb you should first build the cython file. In order to do that, run the following script inside it's directory in terminal:

python setup.py build_ext --inplace

This works for both linux and windows.

For more information on the algorithms and models, please refer to the original paper. You can find them in the references.

If you had any questions regarding the paper, code, or you wanted to contribute, please send me an email: [email protected]

References

@article{taghian2020learning,
  title={Learning financial asset-specific trading rules via deep reinforcement learning},
  author={Taghian, Mehran and Asadi, Ahmad and Safabakhsh, Reza},
  journal={arXiv preprint arXiv:2010.14194},
  year={2020}
}

@article{taghian2021reinforcement,
  title={A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules},
  author={Taghian, Mehran and Asadi, Ahmad and Safabakhsh, Reza},
  journal={arXiv preprint arXiv:2101.03867},
  year={2021}
}
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022