🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Overview

🦙 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions

Official implementation by Samsung Research

by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky.

🔥 🔥 🔥
LaMa generalizes surprisingly well to much higher resolutions (~2k ❗️ ) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.

[Project page] [arXiv] [Supplementary] [BibTeX]


Try out in Google Colab

Environment setup

Clone the repo: git clone https://github.com/saic-mdal/lama.git

There are three options of an environment:

  1. Python virtualenv:

    virtualenv inpenv --python=/usr/bin/python3
    source inpenv/bin/activate
    pip install torch==1.8.0 torchvision==0.9.0
    
    cd lama
    pip install -r requirements.txt 
    
  2. Conda

    % Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
    $HOME/miniconda/bin/conda init bash
    
    cd lama
    conda env create -f conda_env.yml
    conda activate lama
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y
    pip install pytorch-lightning==1.2.9
    
  3. Docker: No actions are needed 🎉 .

Inference

Run

cd lama
export TORCH_HOME=$(pwd) && export PYTHONPATH=.

1. Download pre-trained models

Install tool for yandex disk link extraction:

pip3 install wldhx.yadisk-direct

The best model (Places2, Places Challenge):

curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip

All models (Places & CelebA-HQ):

curl -L $(yadisk-direct https://disk.yandex.ru/d/EgqaSnLohjuzAg) -o lama-models.zip
unzip lama-models.zip

2. Prepare images and masks

Download test images:

curl -L $(yadisk-direct https://disk.yandex.ru/d/xKQJZeVRk5vLlQ) -o LaMa_test_images.zip
unzip LaMa_test_images.zip
OR prepare your data: 1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder.
  • You can use the script for random masks generation.
  • Check the format of the files:
    image1_mask001.png
    image1.png
    image2_mask001.png
    image2.png
    
  1. Specify image_suffix, e.g. .png or .jpg or _input.jpg in configs/prediction/default.yaml.

3. Predict

On the host machine:

python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output

OR in the docker

The following command will pull the docker image from Docker Hub and execute the prediction script

bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu

Docker cuda: TODO

Train and Eval

⚠️ Warning: The training is not fully tested yet, e.g., did not re-training after refactoring ⚠️

Make sure you run:

cd lama
export TORCH_HOME=$(pwd) && export PYTHONPATH=.

Then download models for perceptual loss:

mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth

Places

On the host machine:

# Download data from http://places2.csail.mit.edu/download.html
# Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section
wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar
wget http://data.csail.mit.edu/places/places365/val_large.tar
wget http://data.csail.mit.edu/places/places365/test_large.tar

# Unpack and etc.
bash fetch_data/places_standard_train_prepare.sh
bash fetch_data/places_standard_test_val_prepare.sh
bash fetch_data/places_standard_evaluation_prepare_data.sh

# Sample images for test and viz at the end of epoch
bash fetch_data/places_standard_test_val_sample.sh
bash fetch_data/places_standard_test_val_gen_masks.sh

# Run training
# You can change bs with data.batch_size=10
python bin/train.py -cn lama-fourier location=places_standard

# Infer model on thick/thin/medium masks in 256 and 512 and run evaluation 
# like this:
python3 bin/predict.py \
model.path=$(pwd)/experiments/
   
    _
    
     _lama-fourier_/ \
indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt

python3 bin/evaluate_predicts.py \
$(pwd)/configs/eval_2gpu.yaml \
$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
$(pwd)/inference/random_thick_512 $(pwd)/inference/random_thick_512_metrics.csv

    
   

Docker: TODO

CelebA

On the host machine:

# Make shure you are in lama folder
cd lama
export TORCH_HOME=$(pwd) && export PYTHONPATH=.

# Download CelebA-HQ dataset
# Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P

# unzip & split into train/test/visualization & create config for it
bash fetch_data/celebahq_dataset_prepare.sh

# generate masks for test and visual_test at the end of epoch
bash fetch_data/celebahq_gen_masks.sh

# Run training
python bin/train.py -cn lama-fourier-celeba data.batch_size=10

# Infer model on thick/thin/medium masks in 256 and run evaluation 
# like this:
python3 bin/predict.py \
model.path=$(pwd)/experiments/
   
    _
    
     _lama-fourier-celeba_/ \
indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \
outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt

    
   

Docker: TODO

Places Challenge

On the host machine:

# This script downloads multiple .tar files in parallel and unpacks them
# Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) 
bash places_challenge_train_download.sh

TODO: prepare
TODO: train 
TODO: eval

Docker: TODO

Create your data

On the host machine:

Explain explain explain

TODO: format
TODO: configs 
TODO: run training
TODO: run eval

OR in the docker:

TODO: train
TODO: eval

Hints

Generate different kinds of masks

The following command will execute a script that generates random masks.

bash docker/1_generate_masks_from_raw_images.sh \
    configs/data_gen/random_medium_512.yaml \
    /directory_with_input_images \
    /directory_where_to_store_images_and_masks \
    --ext png

The test data generation command stores images in the format, which is suitable for prediction.

The table below describes which configs we used to generate different test sets from the paper. Note that we do not fix a random seed, so the results will be slightly different each time.

Places 512x512 CelebA 256x256
Narrow random_thin_512.yaml random_thin_256.yaml
Medium random_medium_512.yaml random_medium_256.yaml
Wide random_thick_512.yaml random_thick_256.yaml

Feel free to change the config path (argument #1) to any other config in configs/data_gen or adjust config files themselves.

Override parameters in configs

Also you can override parameters in config like this:

python3 bin/train.py -cn 
   
     data.batch_size=10 run_title=my-title

   

Where .yaml file extension is omitted

Models options

Config names for models from paper (substitude into the training command):

* big-lama
* big-lama-regular
* lama-fourier
* lama-regular
* lama_small_train_masks

Which are seated in configs/training/folder

Links

Training time & resources

TODO

Acknowledgments

Citation

If you found this code helpful, please consider citing:

@article{suvorov2021resolution,
  title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
  author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
  journal={arXiv preprint arXiv:2109.07161},
  year={2021}
}
Owner
Advanced Image Manipulation Lab @ Samsung AI Center Moscow
Advanced Image Manipulation Lab @ Samsung AI Center Moscow
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022