A best practice for tensorflow project template architecture.

Overview

Tensorflow Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributing in tensorflow projects here's a tensorflow project template that combines simplcity, best practice for folder structure and good OOP design. The main idea is that there's much stuff you do every time you start your tensorflow project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new tensorflow project.

So, here's a simple tensorflow template that help you get into your main project faster and just focus on your core (Model, Training, ...etc)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement VGG model so you should do the following:

  • In models folder create a class named VGG that inherit the "base_model" class
    class VGGModel(BaseModel):
        def __init__(self, config):
            super(VGGModel, self).__init__(config)
            #call the build_model and init_saver functions.
            self.build_model() 
            self.init_saver() 
  • Override these two functions "build_model" where you implement the vgg model, and "init_saver" where you define a tensorflow saver, then call them in the initalizer.
     def build_model(self):
        # here you build the tensorflow graph of any model you want and also define the loss.
        pass
            
     def init_saver(self):
        # here you initalize the tensorflow saver that will be used in saving the checkpoints.
        self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)
  • In trainers folder create a VGG trainer that inherit from "base_train" class
    class VGGTrainer(BaseTrain):
        def __init__(self, sess, model, data, config, logger):
            super(VGGTrainer, self).__init__(sess, model, data, config, logger)
  • Override these two functions "train_step", "train_epoch" where you write the logic of the training process
    def train_epoch(self):
        """
       implement the logic of epoch:
       -loop on the number of iterations in the config and call the train step
       -add any summaries you want using the summary
        """
        pass

    def train_step(self):
        """
       implement the logic of the train step
       - run the tensorflow session
       - return any metrics you need to summarize
       """
        pass
  • In main file, you create the session and instances of the following objects "Model", "Logger", "Data_Generator", "Trainer", and config
    sess = tf.Session()
    # create instance of the model you want
    model = VGGModel(config)
    # create your data generator
    data = DataGenerator(config)
    # create tensorboard logger
    logger = Logger(sess, config)
  • Pass the all these objects to the trainer object, and start your training by calling "trainer.train()"
    trainer = VGGTrainer(sess, model, data, config, logger)

    # here you train your model
    trainer.train()

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

Project architecture

Folder structure

├──  base
│   ├── base_model.py   - this file contains the abstract class of the model.
│   └── base_train.py   - this file contains the abstract class of the trainer.
│
│
├── model               - this folder contains any model of your project.
│   └── example_model.py
│
│
├── trainer             - this folder contains trainers of your project.
│   └── example_trainer.py
│   
├──  mains              - here's the main(s) of your project (you may need more than one main).
│    └── example_main.py  - here's an example of main that is responsible for the whole pipeline.

│  
├──  data _loader  
│    └── data_generator.py  - here's the data_generator that is responsible for all data handling.
│ 
└── utils
     ├── logger.py
     └── any_other_utils_you_need

Main Components

Models


  • Base model

    Base model is an abstract class that must be Inherited by any model you create, the idea behind this is that there's much shared stuff between all models. The base model contains:

    • Save -This function to save a checkpoint to the desk.
    • Load -This function to load a checkpoint from the desk.
    • Cur_epoch, Global_step counters -These variables to keep track of the current epoch and global step.
    • Init_Saver An abstract function to initialize the saver used for saving and loading the checkpoint, Note: override this function in the model you want to implement.
    • Build_model Here's an abstract function to define the model, Note: override this function in the model you want to implement.
  • Your model

    Here's where you implement your model. So you should :

    • Create your model class and inherit the base_model class
    • override "build_model" where you write the tensorflow model you want
    • override "init_save" where you create a tensorflow saver to use it to save and load checkpoint
    • call the "build_model" and "init_saver" in the initializer.

Trainer


  • Base trainer

    Base trainer is an abstract class that just wrap the training process.

  • Your trainer

    Here's what you should implement in your trainer.

    1. Create your trainer class and inherit the base_trainer class.
    2. override these two functions "train_step", "train_epoch" where you implement the training process of each step and each epoch.

Data Loader

This class is responsible for all data handling and processing and provide an easy interface that can be used by the trainer.

Logger

This class is responsible for the tensorboard summary, in your trainer create a dictionary of all tensorflow variables you want to summarize then pass this dictionary to logger.summarize().

This class also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric. Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Comet.ml Integration

This template also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric.

Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Here's how it looks after you start training:

You can also link your Github repository to your comet.ml project for full version control. Here's a live page showing the example from this repo

Configuration

I use Json as configuration method and then parse it, so write all configs you want then parse it using "utils/config/process_config" and pass this configuration object to all other objects.

Main

Here's where you combine all previous part.

  1. Parse the config file.
  2. Create a tensorflow session.
  3. Create an instance of "Model", "Data_Generator" and "Logger" and parse the config to all of them.
  4. Create an instance of "Trainer" and pass all previous objects to it.
  5. Now you can train your model by calling "Trainer.train()"

Future Work

  • Replace the data loader part with new tensorflow dataset API.

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Thanks for my colleague Mo'men Abdelrazek for contributing in this work. and thanks for Mohamed Zahran for the review. Thanks for Jtoy for including the repo in Awesome Tensorflow.

Owner
Mahmoud Gamal Salem
MSc. in AI at university of Guelph and Vector Institute. AI intern @samsung
Mahmoud Gamal Salem
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021