Plotting points that lie on the intersection of the given curves using gradient descent.

Overview

Plotting intersection of curves using gradient descent

Webapp Link ---> Streamlit App

What's the app about Why this app
Plotting functions and their intersection. An interesting application of gradient descent.
I'm a fan of plotting graphs (and visualizations in general).

Let's say you are giving equations of curves and you need to plot the intersection of these curves. As an example, say you have 2 spheres (3D), how would you plot the intersection of the given spheres?

... x, a & b are vectors of size 3.

My first approach to this problem was finding the equation of intersection of these 2 functions by equating them i.e. F_1(x) = F_2(x). Then trying to simplify the equation and use that equation to plot the points. This approach is not feasible for 2 reasons:

  1. Equating the 2 functions won't necessarily give you the equation of intersection. For instance, equating 2 equations of spheres will give you intersection plane of the spheres and not the equation of intersecting circle (if any).
  2. Even if you had an equation, the question still remains, how to plot points from a given equation?

If you observe, points that lie on the intersection of the curves should satisfy all the functions separately i.e.

So, another approach (highly ineffective) would be to generate points randomly everytime and see if they satisfy all the given equations. If it does, it is a valid 'point'. Else, generate another random point and repeat untill you have sufficient points. Downsides of this approach:

  1. The search space is too big. Even bigger for N-dimensional points.
  2. Highly ineffective approach. Might take forever to stumble upon such valid points.

Gradient Descent to the rescue

Can we modify the previous approach- Instead of discarding an invalid randomly generated point, can we update it iteratively so that it approaches a valid solution? If so, what would it mean to be a valid solution and when should we stop updating the sample?

What should be the criteria for a point x to be a valid solution?

If the point lies on the intersection of the curves, it should satisfy for all i i.e.

; &

We can define a function as the summation of the given functions to hold the above condition.

So, we can say that a point will be valid when it satisfies G(x) = 0, since it will only hold when all the F_i(x) are zero. This will be our criterion for checking if the point is a valid solution.

However, we are not yet done. The range of G(x) can be from . This means, the minimum value of G(x) is not necessarily 0. This is a problem because if we keep minimizing G(x) iteratively by updating x, the value of G(x) will cross 0 and approach a negative value (it's minima).

This could be solved if the minima of G(x) is 0 itself. This way we can keep updating x until G(x) approaches the minima (0 in this case). So, we need to do slight modification in G(x) such that its minimum value is 0.

My first instict was to define G(x) as the sum of absolute F_i(x) i.e.

The minimum value of this function will be 0 and will hold all the conditions discussed above. However, if we are trying to use Gradient Descent, using modulus operation can be problematic because the function may not remain smooth anymore.

So, what's an easy alternative for modulus operator which also holds the smoothness property? - Use squares!

This function can now be minimised to get the points of intersection of the curves.

  1. The function will be smooth and continuos. Provided F(x) are themselves smooth and continuous.
  2. The minimum value of G(x) is zero.
  3. The minimum value of G(x) represents the interesection of all F_i(x)
 Generate a random point x
 While G(x) != 0:
    x = x - lr * gradient(G(x))
    
 Repeat for N points.


Assumptions:

  1. Curves do intersect somewhere.
  2. The individual curves are themselves differentiable.
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021