Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

Overview

DID-MDN

Density-aware Single Image De-raining using a Multi-stream Dense Network

He Zhang, Vishal M. Patel

[Paper Link] (CVPR'18)

We present a novel density-aware multi-stream densely connected convolutional neural network-based algorithm, called DID-MDN, for joint rain density estimation and de-raining. The proposed method enables the network itself to automatically determine the rain-density information and then efficiently remove the corresponding rain-streaks guided by the estimated rain-density label. To better characterize rain-streaks with dif- ferent scales and shapes, a multi-stream densely connected de-raining network is proposed which efficiently leverages features from different scales. Furthermore, a new dataset containing images with rain-density labels is created and used to train the proposed density-aware network.

@inproceedings{derain_zhang_2018,		
  title={Density-aware Single Image De-raining using a Multi-stream Dense Network},
  author={Zhang, He and Patel, Vishal M},
  booktitle={CVPR},
  year={2018}
} 

Prerequisites:

  1. Linux
  2. Python 2 or 3
  3. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)

Installation:

  1. Install PyTorch and dependencies from http://pytorch.org (Ubuntu+Python2.7) (conda install pytorch torchvision -c pytorch)

  2. Install Torch vision from the source. (git clone https://github.com/pytorch/vision cd vision python setup.py install)

  3. Install python package: numpy, scipy, PIL, pdb

Demo using pre-trained model

python test.py --dataroot ./facades/github --valDataroot ./facades/github --netG ./pre_trained/netG_epoch_9.pth   

Pre-trained model can be downloaded at (put it in the folder 'pre_trained'): https://drive.google.com/drive/folders/1VRUkemynOwWH70bX9FXL4KMWa4s_PSg2?usp=sharing

Pre-trained density-aware model can be downloaded at (Put it in the folder 'classification'): https://drive.google.com/drive/folders/1-G86JTvv7o1iTyfB2YZAQTEHDtSlEUKk?usp=sharing

Pre-trained residule-aware model can be downloaded at (Put it in the folder 'residual_heavy'): https://drive.google.com/drive/folders/1bomrCJ66QVnh-WduLuGQhBC-aSWJxPmI?usp=sharing

Training (Density-aware Deraining network using GT label)

python derain_train_2018.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --valDataroot ./facades/github --exp ./check --netG ./pre_trained/netG_epoch_9.pth.
Make sure you download the training sample and put in the right folder

Density-estimation Training (rain-density classifier)

python train_rain_class.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --exp ./check_class	

Testing

python demo.py --dataroot ./your_dataroot --valDataroot ./your_dataroot --netG ./pre_trained/netG_epoch_9.pth   

Reproduce

To reproduce the quantitative results shown in the paper, please save both generated and target using python demo.py into the .png format and then test using offline tool such as the PNSR and SSIM measurement in Python or Matlab. In addition, please use netG.train() for testing since the batch for training is 1.

Dataset

Training (heavy, medium, light) and testing (TestA and Test B) data can be downloaded at the following link: https://drive.google.com/file/d/1cMXWICiblTsRl1zjN8FizF5hXOpVOJz4/view?usp=sharing

License

Code is under MIT license.

Acknowledgments

Great thanks for the insight discussion with Vishwanath Sindagi and help from Hang Zhang

Owner
He Zhang
Research Sc[email protected], Phd in Computer Vision, Deep Learning
He Zhang
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022