Pytorch implementation of the unsupervised object discovery method LOST.

Related tags

Deep LearningLOST
Overview

LOST

Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper:

Localizing Objects with Self-Supervised Transformers and no Labels [arXiv]
by Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Marlet and Jean Ponce

LOST visualizations LOST visualizations


If you use the LOST code or framework in your research, please consider citing:

@article{LOST,
   title = {Localizing Objects with Self-Supervised Transformers and no Labels},
   author = {Oriane Sim\'eoni and Gilles Puy and Huy V. Vo and Simon Roburin and Spyros Gidaris and Andrei Bursuc and Patrick P\'erez and Renaud Marlet and Jean Ponce},
   journal = {arXiv preprint arXiv:2109.14279},
   month = {09},
   year = {2021}
}

Installation

Dependencies

This code was implemented with python 3.7, PyTorch 1.7.1 and CUDA 10.2. Please install PyTorch. In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

Install DINO

This method is based on DINO paper. The framework can be installed using the following commands:

> __init__.py; cd ../; ">
git clone https://github.com/facebookresearch/dino.git
cd dino; 
touch __init__.py
echo -e "import sys\nfrom os.path import dirname, join\nsys.path.insert(0, join(dirname(__file__), '.'))" >> __init__.py; cd ../;

The code was made using the commit ba9edd1 of DINO repo (please rebase if breakage).

Apply LOST to one image

Following are scripts to apply LOST to an image defined via the image_path parameter and visualize the predictions (pred), the maps of the Figure 2 in the paper (fms) and the visulization of the seed expansion (seed_expansion). Box predictions are also stored in the output directory given by parameter output_dir.

python main_lost.py --image_path examples/VOC07_000236.jpg --visualize pred
python main_lost.py --image_path examples/VOC07_000236.jpg --visualize fms
python main_lost.py --image_path examples/VOC07_000236.jpg --visualize seed_expansion

Launching on datasets

Following are the different steps to reproduce the results of LOST presented in the paper.

PASCAL-VOC

Please download the PASCAL VOC07 and PASCAL VOC12 datasets (link) and put the data in the folder datasets. There should be the two subfolders: datasets/VOC2007 and datasets/VOC2012. In order to apply lost and compute corloc results (VOC07 61.9, VOC12 64.0), please launch:

python main_lost.py --dataset VOC07 --set trainval
python main_lost.py --dataset VOC12 --set trainval

COCO

Please download the COCO dataset and put the data in datasets/COCO. Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 50.7), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_lost.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 61.9 64.0 50.7
ViT-S/8 DINO 55.5 57.0 49.5
ViT-B/16 DINO 60.1 63.3 50.0
ResNet50 DINO 36.8 42.7 26.5
ResNet50 Imagenet 33.5 39.1 25.5


Previous results on the dataset VOC07 can be obtained by launching:

python main_lost.py --dataset VOC07 --set trainval #VIT-S/16
python main_lost.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_lost.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16
python main_lost.py --dataset VOC07 --set trainval --arch resnet50 #Resnet50/DINO
python main_lost.py --dataset VOC07 --set trainval --arch resnet50_imagenet #Resnet50/imagenet
Comments
  • Is LOST designed to perform well with DINO features specifically?

    Is LOST designed to perform well with DINO features specifically?

    I've replaced LOST's backbone (basically the dino weights) with the ones in CLIP, and it did not work well. But when switching back to dino weights, both ViT and ResNet50 backbone could generate good feature maps. Why would this happen?

    question 
    opened by zengyuy 3
  • Error in evaluation with Detectron2

    Error in evaluation with Detectron2

    Hi @osimeoni,

    Thank you for making the code available!

    When evaluating Detectron2 on VOC12 with the obtained pseudolables. I obtain the following error: AttributeError: "int object has no attribute 'value'. It seems that the coco_style_file is not registered by 'register_coco_instances' (see image underneath). Any idea how this can be fixed? Thanks.

    image

    opened by MarcVisions 2
  • Class-aware detection

    Class-aware detection

    Do you plan on releasing code for class-aware detection (i.e., to produce the results in Table 3 of https://arxiv.org/pdf/2109.14279.pdf)? I don't believe I see any of the necessary code for assigning object categories to boxes, but please correct me if I'm wrong.

    opened by gholste 2
  • Multi-object discovery

    Multi-object discovery

    HI, I have a confusion about the interesting work. How to perform multi-target discovery in the figure 1 (middle) of your paper? Any advice is greatly appreciated.

    question 
    opened by rgbd-zml 1
  • Lost not performing well using DINO with fine-tuning

    Lost not performing well using DINO with fine-tuning

    I’ve trained DINO’s model with my own Dataset, doing a finetuning on the ViT’s pre trained models of DINO. After a feel experiments I noticed that, every time that a epoch of the DINO’s finetune ran, the loss of the training reduce, however the IoU (the validation metric that we are using) of the bounding boxes generated by the LOST algorithm gets worse. Can anyone explain me why this is happening and how can I fix it?

    opened by ericyoshida 1
  • corLoc evaluation

    corLoc evaluation

    Hi @osimeoni . I am suspicious about the corLoc evaluation part in the code. The corLoc for each image is true whenever one of the ground truth objects is hit! https://github.com/valeoai/LOST/blob/2b678aca89c18aa79c56ec3f6d4a0b979a91608d/main_lost.py#L311 What about other objects? Is it right?

    opened by Mirsadeghi 1
Owner
Valeo.ai
The GitHub account of Valeo.ai
Valeo.ai
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023