PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Overview

Quasi-Recurrent Neural Network (QRNN) for PyTorch

Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py example.

This repository contains a PyTorch implementation of Salesforce Research's Quasi-Recurrent Neural Networks paper.

The QRNN provides similar accuracy to the LSTM but can be betwen 2 and 17 times faster than the highly optimized NVIDIA cuDNN LSTM implementation depending on the use case.

To install, simply run:

pip install cupy pynvrtc git+https://github.com/salesforce/pytorch-qrnn

If you use this code or our results in your research, please cite:

@article{bradbury2016quasi,
  title={{Quasi-Recurrent Neural Networks}},
  author={Bradbury, James and Merity, Stephen and Xiong, Caiming and Socher, Richard},
  journal={International Conference on Learning Representations (ICLR 2017)},
  year={2017}
}

Software Requirements

This codebase requires Python 3, PyTorch, pynvrtc (NVIDIA's Python Bindings to NVRTC), and CuPy. While the codebase contains a CPU implementation of the QRNN, the GPU QRNN implementation is used by default if possible. Requirements are provided in requirements.txt.

Example Usage

We've updated the previously released Salesforce Research AWD-LSTM language modeling codebase to support use of the AWD-QRNN. With the same number of parameters as the LSTM and less well tuned hyper parameters, the QRNN model trains over twice as quickly and achieves nearly equivalent state-of-the-art language modeling results. For full details, refer to the AWD-LSTM-LM repository.

Usage

The QRNN API is meant to be drop-in compatible with the LSTM for many standard use cases. As such, the easiest thing to do is replace any GRU or LSTM module with the QRNN.

Note: bidirectional QRNN is not yet supported though will be in the near future.

import torch
from torchqrnn import QRNN

seq_len, batch_size, hidden_size = 7, 20, 256
size = (seq_len, batch_size, hidden_size)
X = torch.autograd.Variable(torch.rand(size), requires_grad=True).cuda()

qrnn = QRNN(hidden_size, hidden_size, num_layers=2, dropout=0.4)
qrnn.cuda()
output, hidden = qrnn(X)

print(output.size(), hidden.size())

The full documentation for the QRNN is listed below:

QRNN(input_size, hidden_size, num_layers, dropout=0):
    Applies a multiple layer Quasi-Recurrent Neural Network (QRNN) to an input sequence.

    Args:
        input_size: The number of expected features in the input x.
        hidden_size: The number of features in the hidden state h. If not specified, the input size is used.
        num_layers: The number of QRNN layers to produce.
        layers: List of preconstructed QRNN layers to use for the QRNN module (optional).
        save_prev_x: Whether to store previous inputs for use in future convolutional windows (i.e. for a continuing sequence such as in language modeling). If true, you must call reset to remove cached previous values of x. Default: False.
        window: Defines the size of the convolutional window (how many previous tokens to look when computing the QRNN values). Supports 1 and 2. Default: 1.
        zoneout: Whether to apply zoneout (i.e. failing to update elements in the hidden state) to the hidden state updates. Default: 0.
        output_gate: If True, performs QRNN-fo (applying an output gate to the output). If False, performs QRNN-f. Default: True.
        use_cuda: If True, uses fast custom CUDA kernel. If False, uses naive for loop. Default: True.

    Inputs: X, hidden
        - X (seq_len, batch, input_size): tensor containing the features of the input sequence.
        - hidden (layers, batch, hidden_size): tensor containing the initial hidden state for the QRNN.

    Outputs: output, h_n
        - output (seq_len, batch, hidden_size): tensor containing the output of the QRNN for each timestep.
        - h_n (layers, batch, hidden_size): tensor containing the hidden state for t=seq_len

The included QRNN layer supports convolutional windows of size 1 or 2 but will be extended in the future to support arbitrary convolutions.

If you are using convolutional windows of size 2 (i.e. looking at the inputs from two previous timesteps to compute the input) and want to run over a long sequence in batches, such as when using BPTT, you can set save_prev_x=True and call reset when you wish to reset the cached previous inputs.

If you want flexibility in the definition of each QRNN layer, you can construct individual QRNNLayer modules and pass them to the QRNN module using the layer argument.

Speed

Speeds are between 2 and 17 times faster than NVIDIA's cuDNN LSTM, with the difference as a result of varying batch size and sequence length. The largest gains are for small batch sizes or long sequence lengths, both highlighting the LSTMs parallelization difficulty due to forced sequentiality. For full information, refer to the Quasi-Recurrent Neural Networks paper.

Figure 4 from QRNN paper

Pictured above is Figure 4 from the QRNN paper:
Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105 timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN LSTM layer for data with the given batch size and sequence length. Training results are similar.

Extending the QRNN speed advantage to other recurrent architectures with ForgetMult

The QRNN architecture's speed advantage comes from two primary sources: the ability to batch all computations into a few large matrix multiplications and the use of a fast element-wise recurrence function. This recurrence function, named ForgetMult, is general and can be used in other scenarios. The ForgetMult takes two arguments - the candidate input x and forget gates f - and computes h = f * x + (1 - f) * hm1 where hm1 is the previous hidden state output.

The QRNN class is a thin wrapper around this that performs the large matrix multiplications for the candidate x, the forget gates f, and the output gates o. Any other operation which requires recurrence and can have precomputed values for the candidate x and forget gates f can use this fast form of recurrence.

Example usage of the ForgetMult module: output = ForgetMult()(f, x, hidden).

    ForgetMult computes a simple recurrent equation:
    h_t = f_t * x_t + (1 - f_t) * h_{t-1}

    This equation is equivalent to dynamic weighted averaging.

    Inputs: X, hidden
        - X (seq_len, batch, input_size): tensor containing the features of the input sequence.
        - F (seq_len, batch, input_size): tensor containing the forget gate values, assumed in range [0, 1].
        - hidden_init (batch, input_size): tensor containing the initial hidden state for the recurrence (h_{t-1}).
        - cuda: If True, use the fast element-wise CUDA kernel for recurrence. If False, uses naive for loop. Default: True.

Want to help out?

First, thanks! :)

Open tasks that are interesting:

  • Modify the ForgetMult CUDA kernel to produce a BackwardForgetMult. This will enable a bidirectional QRNN. The input should be the same - f and x - but the kernel should walk backwards through the inputs.
  • Bidirectional QRNN support (requires the modification above)
  • Support PyTorch's PackedSequence such that variable length sequences are correctly masked
  • Show how to use the underlying fast recurrence operator ForgetMult in other generic ways
Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021