Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

Overview

Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence (CVPR'2020)

Wenhan Yang, Robby T. Tan, Shiqi Wang, and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process. The method is inspired by fact that the adjacent frames are highly correlated and can be regarded as different versions of identical scene, and rain streaks are randomly distributed along the temporal dimension. With this in mind, we construct a two-stage Self-Learned Deraining Network (SLDNet) to remove rain streaks based on both temporal correlation and consistency. In the first stage, SLDNet utilizes the temporal correlations and learns to predict the clean version of the current frame based on its adjacent rain video frames. In the second stage, SLDNet enforces the temporal consistency among different frames. It takes both the current rain frame and adjacent rain video frames to recover the structural details. The first stage is responsible for reconstructing main structures, and the second stage is responsible for extracting structural details. We build our network architecture with two sub-tasks, i.e. motion estimation and rain region detection, and optimize them jointly. Our extensive experiments demonstrate the effectiveness of our method, offering better results both quantitatively and qualitatively.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Tan, Robby T. and Wang, Shiqi and Liu, Jiaying},
title = {Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

## Prerequisites - Linux or macOS - Python 3 - NVIDIA GPU + CUDA cuDNN - PyTorch 0.4

Installation

  1. Clone this repo;
  2. Install PyTorch and dependencies from http://pytorch.org;
  3. Download FLowNet V2.0 from https://pan.baidu.com/s/14xPBvYcnGjAJ2adsQOVKhA (extracted code: 3is9). Put the file FlowNet2_checkpoint.pth.tar into SLDNet_code/pretrained_models/FlowNet2_checkpoint.pth.tar;
  4. Download NTURain Dataset (Only including b1_Rain) from https://pan.baidu.com/s/1nsBl6uhj-MWVgr1uBcsy1w (extraced code:rufg). For other sequences, please download them from https://github.com/hotndy/SPAC-SupplementaryMaterials. Unzip b1_Rain.zip and put the file into SLDNet_code/data_NTU/train/b1_Rain/ and SLDNet_code/data_NTU/test/b1_Rain/.

Train

cd SLDNet_code; sh train_video_rain.sh;

Test

cd SLDNet_code; sh test_video_rain.sh;

Contact

If you have questions, you can contact [email protected].

Owner
Yang Wenhan
Yang Wenhan
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022