Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

Overview

Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence (CVPR'2020)

Wenhan Yang, Robby T. Tan, Shiqi Wang, and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process. The method is inspired by fact that the adjacent frames are highly correlated and can be regarded as different versions of identical scene, and rain streaks are randomly distributed along the temporal dimension. With this in mind, we construct a two-stage Self-Learned Deraining Network (SLDNet) to remove rain streaks based on both temporal correlation and consistency. In the first stage, SLDNet utilizes the temporal correlations and learns to predict the clean version of the current frame based on its adjacent rain video frames. In the second stage, SLDNet enforces the temporal consistency among different frames. It takes both the current rain frame and adjacent rain video frames to recover the structural details. The first stage is responsible for reconstructing main structures, and the second stage is responsible for extracting structural details. We build our network architecture with two sub-tasks, i.e. motion estimation and rain region detection, and optimize them jointly. Our extensive experiments demonstrate the effectiveness of our method, offering better results both quantitatively and qualitatively.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Tan, Robby T. and Wang, Shiqi and Liu, Jiaying},
title = {Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

## Prerequisites - Linux or macOS - Python 3 - NVIDIA GPU + CUDA cuDNN - PyTorch 0.4

Installation

  1. Clone this repo;
  2. Install PyTorch and dependencies from http://pytorch.org;
  3. Download FLowNet V2.0 from https://pan.baidu.com/s/14xPBvYcnGjAJ2adsQOVKhA (extracted code: 3is9). Put the file FlowNet2_checkpoint.pth.tar into SLDNet_code/pretrained_models/FlowNet2_checkpoint.pth.tar;
  4. Download NTURain Dataset (Only including b1_Rain) from https://pan.baidu.com/s/1nsBl6uhj-MWVgr1uBcsy1w (extraced code:rufg). For other sequences, please download them from https://github.com/hotndy/SPAC-SupplementaryMaterials. Unzip b1_Rain.zip and put the file into SLDNet_code/data_NTU/train/b1_Rain/ and SLDNet_code/data_NTU/test/b1_Rain/.

Train

cd SLDNet_code; sh train_video_rain.sh;

Test

cd SLDNet_code; sh test_video_rain.sh;

Contact

If you have questions, you can contact [email protected].

Owner
Yang Wenhan
Yang Wenhan
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022