Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

Overview

DeT and DOT

Code and datasets for

  1. "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021)
  2. "Depth-only Object Tracking" (BMVC2021)
@InProceedings{yan2021det,
    author    = {Yan, Song and Yang, Jinyu and Kapyla, Jani and Zheng, Feng and Leonardis, Ales and Kamarainen, Joni-Kristian},
    title     = {DepthTrack: Unveiling the Power of RGBD Tracking},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {10725-10733}
}

@InProceedings{yan2021dot,
  title       = {Depth-only Object Tracking},
  author      = {Yan, Song and Yang, Jinyu and Leonardis, Ales and Kamarainen, Joni-Kristian},
  booktitle   = {Procedings of the British Machine Vision Conference (BMVC)},
  year        = {2021},
  organization= {British Machine Vision Association}
}

The settings are same as that of Pytracking, please read the document of Pytracking for details.

Generated Depth

We highly recommend to generate high quality depth data from the existing RGB tracking benchmarks, such as LaSOT, Got10K, TrackingNet, and COCO.

We show the examples of generated depth here. The first row is the results from HighResDepth for LaSOT RGB images, the second and the third are from DenseDepth for Got10K and COCO RGB images, the forth row is for the failure cases in which the targets are too close to the background or floor. The last row is from DenseDepth for CDTB RGB images.

Examples of generated depth images

In our paper, we used the DenseDepth monocular depth estimation method. We calculate the Ordinal Error (ORD) on the generated depth for CDTB and our DepthTrack test set, and the mean ORD is about 0.386, which is sufficient for training D or RGBD trackers and we have tested it in our works.

And we also tried the recently HighResDepth from CVPR2021, which also performs very well.

@article{alhashim2018high,
  title={High quality monocular depth estimation via transfer learning},
  author={Alhashim, Ibraheem and Wonka, Peter},
  journal={arXiv preprint arXiv:1812.11941},
  year={2018}
}

@inproceedings{miangoleh2021boosting,
  title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
  author={Miangoleh, S Mahdi H and Dille, Sebastian and Mai, Long and Paris, Sylvain and Aksoy, Yagiz},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9685--9694},
  year={2021}
}

We will public the generated depth maps one by one.

Generated Depth maps for LaSOT

We manually remove bad sequences, and here are totally 646 sequences (some zip files may be broken, will be updated soon) used the DenseDepth method. Original DenseDepth outputs are in range [0, 1.0], we multiply 2^16. Please check LaSOT for RGB images and groundtruth.

part01, part02, part03, part04, part05, part06, part07, part08, part09, part10

The generated depth maps by using HighResDepth will be uploaded soon.

If you find some excellent methods to generate high quality depth images, please share it.

Architecture

Actually the network architecture is very simple, just adding one ResNet50 feature extractor for Depth input and then merging the RGB and Depth feature maps. Below figures are

  1. the feature maps for RGB, D inputs and the merged RGBD ones,
  2. the network for RGBD DiMP50, and
  3. RGBD ATOM.

The feature maps for RGB, D and the merged RGBD The network for RGB+D DiMP50 The network for RGB+D ATOM

Download

  1. Download the training dataset(70 sequences) of VOT2021RGBD Challenge from Zenodo (DepthTrack RGBD Tracking Benchmark) and edit the path in local.py More data will be uploaded soon, we hope to bring a large scale RGBD training dataset.
http://doi.org/10.5281/zenodo.4716441
  1. Download the checkpoints for DeT trackers (in install.sh)
gdown https://drive.google.com/uc\?id\=1djSx6YIRmuy3WFjt9k9ZfI8q343I7Y75 -O pytracking/networks/DeT_DiMP50_Max.pth
gdown https://drive.google.com/uc\?id\=1JW3NnmFhX3ZnEaS3naUA05UaxFz6DLFW -O pytracking/networks/DeT_DiMP50_Mean.pth
gdown https://drive.google.com/uc\?id\=1wcGJc1Xq_7d-y-1nWh6M7RaBC1AixRTu -O pytracking/networks/DeT_DiMP50_MC.pth
gdown https://drive.google.com/uc\?id\=17IIroLZ0M_ZVuxkGN6pVy4brTpicMrn8 -O pytracking/networks/DeT_DiMP50_DO.pth
gdown https://drive.google.com/uc\?id\=17aaOiQW-zRCCqPePLQ9u1s466qCtk7Lh -O pytracking/networks/DeT_ATOM_Max.pth
gdown https://drive.google.com/uc\?id\=15LqCjNelRx-pOXAwVd1xwiQsirmiSLmK -O pytracking/networks/DeT_ATOM_Mean.pth
gdown https://drive.google.com/uc\?id\=14wyUaG-pOUu4Y2MPzZZ6_vvtCuxjfYPg -O pytracking/networks/DeT_ATOM_MC.pth

Install

bash install.sh path-to-anaconda DeT

Train

Using the default DiMP50 or ATOM pretrained checkpoints can reduce the training time.

For example, move the default dimp50.pth into the checkpoints folder and rename as DiMPNet_Det_EP0050.pth.tar

python run_training.py bbreg DeT_ATOM_Max
python run_training.py bbreg DeT_ATOM_Mean
python run_training.py bbreg DeT_ATOM_MC

python run_training.py dimp DeT_DiMP50_Max
python run_training.py dimp DeT_DiMP50_Mean
python run_training.py dimp DeT_DiMP50_MC

Test

python run_tracker.py atom DeT_ATOM_Max --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py atom DeT_ATOM_Mean --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py atom DeT_ATOM_MC --dataset_name depthtrack --input_dtype rgbcolormap

python run_tracker.py dimp DeT_DiMP50_Max --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py dimp DeT_DiMP50_Mean --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py dimp DeT_DiMP50_MC --dataset_name depthtrack --input_dtype rgbcolormap


python run_tracker.py dimp dimp50 --dataset_name depthtrack --input_dtype color
python run_tracker.py atom default --dataset_name depthtrack --input_dtype color

Owner
Yan Song
RGBD tracking, Computerized Anthropometry, 3D Human Body Shape Reconstruction
Yan Song
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022