This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

Overview

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv]

Overview

ActionCLIP

Content

Prerequisites

The code is built with following libraries:

  • PyTorch >= 1.8
  • wandb
  • RandAugment
  • pprint
  • tqdm
  • dotmap
  • yaml
  • csv

For video data pre-processing, you may need ffmpeg.

More detail information about libraries see INSTALL.md.

Data Preparation

We need to first extract videos into frames for fast reading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Kinetics, UCF101, HMDB51, Charades.

Updates

  • We now support single crop validation(including zero-shot) on Kinetics-400, UCF101 and HMDB51. The pretrained models see MODEL_ZOO.md for more information.
  • we now support the model-training on Kinetics-400, UCF101 and HMDB51 on 8, 16 and 32 frames. The model-training configs see configs/README.md for more information.
  • We now support the model-training on your own datasets. The detail information see configs/README.md.

Pretrained Models

Training video models is computationally expensive. Here we provide some of the pretrained models. We provide a large set of trained models in the ActionCLIP MODEL_ZOO.md.

Kinetics-400

We experiment ActionCLIP with different backbones(we choose Transf as our final visual prompt since it obtains the best results) and input frames configurations on k400. Here is a list of pre-trained models that we provide (see Table 6 of the paper).

model n-frame top1 Acc(single-crop) top5 Acc(single-crop) checkpoint
ViT-B/32 8 78.36% 94.25% link pwd:8hg2
ViT-B/16 8 81.09% 95.49% link
ViT-B/16 16 81.68% 95.87% link
ViT-B/16 32 82.32% 96.20% link pwd:v7nn

HMDB51 && UCF101

On HMDB51 and UCF101 datasets, the accuracy(k400 pretrained) is reported under the accurate setting.

HMDB51

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 76.2% link

UCF101

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 97.1% link

Testing

To test the downloaded pretrained models on Kinetics or HMDB51 or UCF101, you can run scripts/run_test.sh. For example:

# test
bash scripts/run_test.sh  ./configs/k400/k400_ft_tem.yaml

Zero-shot

We provide several examples to do zero-shot validation on kinetics-400, UCF101 and HMDB51.

  • To do zero-shot validation on Kinetics from CLIP pretrained models, you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/k400/k400_ft_zero_shot.yaml
  • To do zero-shot validation on UCF101 and HMDB51 from Kinetics pretrained models, you need first prepare the k400 pretrained model and then you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/hmdb51/hmdb_ft_zero_shot.yaml

Training

We provided several examples to train ActionCLIP with this repo:

  • To train on Kinetics from CLIP pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/k400/k400_ft_tem_test.yaml
  • To train on HMDB51 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/hmdb51/hmdb_ft.yaml
  • To train on UCF101 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/ucf101/ucf_ft.yaml

More training details, you can find in configs/README.md

Contributors

ActionCLIP is written and maintained by Mengmeng Wang and Jiazheng Xing.

Citing ActionCLIP

If you find ActionClip useful in your research, please use the following BibTex entry for citation.

@inproceedings{wang2022ActionCLIP,
  title={ActionCLIP: A New Paradigm for Video Action Recognition},
  author={Mengmeng Wang, Jiazheng Xing and Yong Liu},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
} 

Acknowledgments

Our code is based on CLIP and STM.

A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023