Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Overview

Adversarial Training Against Location-Optimized Adversarial Patches

arXiv | Paper | Code | Video | Slides

Code for the paper:

Sukrut Rao, David Stutz, Bernt Schiele. (2020) Adversarial Training Against Location-Optimized Adversarial Patches. In: Bartoli A., Fusiello A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_32

Setup

Requirements

  • Python 3.7 or above
  • PyTorch
  • scipy
  • h5py
  • scikit-image
  • scikit-learn

Optional requirements

To use script to convert data to HDF5 format

  • torchvision
  • Pillow
  • pandas

To use Tensorboard logging

  • tensorboard

With the exception of Python and PyTorch, all requirements can be installed directly using pip:

$ pip install -r requirements.txt

Setting the paths

In common/paths.py, set the following variables:

  • BASE_DATA: base path for datasets.
  • BASE_EXPERIMENTS: base path for trained models and perturbations after attacks.
  • BASE_LOGS: base path for tensorboard logs (if used).

Data

Data needs to be provided in the HDF5 format. To use a dataset, use the following steps:

  • In common/paths.py, set BASE_DATA to the base path where data will be stored.
  • For each dataset, create a directory named <dataset-name> in BASE_DATA
  • Place the following files in this directory:
    • train_images.h5: Training images
    • train_labels.h5: Training labels
    • test_images.h5: Test images
    • test_labels.h5: Test labels

A script create_dataset_h5.py has been provided to convert data in a comma-separated CSV file consisting of full paths to images and their corresponding labels to a HDF5 file. To use this script, first set BASE_DATA in common/paths.py. If the files containing training and test data paths and labels are train.csv and test.csv respectively, use:

$ python scripts/create_dataset_h5.py --train_csv /path/to/train.csv --test_csv /path/to/test.csv --dataset dataset_name

where dataset_name is the name for the dataset.

Training and evaluating a model

Training

To train a model, use:

$ python scripts/train.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/train.py -h

Evaluation

To evaluate a trained model, use:

$ python scripts/evaluate.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/evaluate.py -h

Using models and attacks from the paper

The following provides the arguments to use with the training and evaluation scripts to train the models and run the attacks described in the paper. The commands below assume that the dataset is named cifar10 and has 10 classes.

Models

Normal

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --cuda --mode normal --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Occlusion

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 1 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Fixed

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --location fixed --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Rand

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-RandLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type random --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-FullLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type full --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Attacks

The arguments used here correspond to using 100 iterations and 30 attempts. These can be changed by appropriately setting --iterations and --attempts respectively.

AP-Fixed

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location fixed --epsilon 0.05 --iterations 100 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-Rand

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-RandLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type random --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-FullLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type full --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

Citation

Please cite the paper as follows:

@InProceedings{Rao2020Adversarial,
author = {Sukrut Rao and David Stutz and Bernt Schiele},
title = {Adversarial Training Against Location-Optimized Adversarial Patches},
booktitle = {Computer Vision -- ECCV 2020 Workshops},
year = {2020},
editor = {Adrien Bartoli and Andrea Fusiello},
publisher = {Springer International Publishing},
address = {Cham},
pages = {429--448},
isbn = {978-3-030-68238-5}
}

Acknowledgement

This repository uses code from davidstutz/confidence-calibrated-adversarial-training.

License

Copyright (c) 2020 Sukrut Rao, David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023