Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Overview

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv)

This is a Pytorch implementation of our technical report.

Compare

Comparison between the proposed LV-ViT and other recent works based on transformers. Note that we only show models whose model sizes are under 100M.

Training Pipeline

Pipeline

Our codes are based on the pytorch-image-models by Ross Wightman.

LV-ViT Models

Model layer dim Image resolution Param Top 1 Download
LV-ViT-S 16 384 224 26.15M 83.3 link
LV-ViT-S 16 384 384 26.30M 84.4 link
LV-ViT-M 20 512 224 55.83M 84.0 link
LV-ViT-M 20 512 384 56.03M 85.4 link
LV-ViT-L 24 768 448 150.47M 86.2 link

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml timm==0.4.5

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Label data

We provide NFNet-F6 generated dense label map here. As NFNet-F6 are based on pure ImageNet data, no extra training data is involved.

Training

Coming soon

Reference

If you use this repo or find it useful, please consider citing:

@misc{jiang2021token,
      title={Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet}, 
      author={Zihang Jiang and Qibin Hou and Li Yuan and Daquan Zhou and Xiaojie Jin and Anran Wang and Jiashi Feng},
      year={2021},
      eprint={2104.10858},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Related projects

T2T-ViT, Re-labeling ImageNet.

Comments
  • error: download the pretrained model but couldn't be unzipped

    error: download the pretrained model but couldn't be unzipped

    tar -xvf lvvit_s-26M-384-84-4.pth.tar tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    opened by Williamlizl 10
  • The accuracy of the validation set is 0,and the loss is always around 13

    The accuracy of the validation set is 0,and the loss is always around 13

    Hello! I use ILSVRC2012_img_train and ILSVRC2012_img_val, and use the provided label_top5_train_nfnet from Google Drive. I train lv-vit-s with batch_size 64 without apex for one epoch. Thanks for your advice.

    opened by yifanQi98 7
  • Pretrained weights for LV-ViT-T

    Pretrained weights for LV-ViT-T

    Hi,

    Thanks for sharing your work. Could you also provide the pre-trained weights for the LV-ViT-T model variant, the one that achieves 79.1% top1-acc. as mentioned in Table 1 of your paper?

    All the best, Marc

    opened by marc345 5
  • train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    Hi, thanks for you great work. When I train script, some error occurs: AttributeError: 'tuple' object has no attribute 'log_softmax'

    with amp_autocast():   
                output = model(input)  
                loss = loss_fn(output, target)  # error occurs
    
    

    and loss function is train_loss_fn = LabelSmoothingCrossEntropy(smoothing=0.0).cuda()

    by the way: Could you please tell me why we need to specify smoothing=0.0?

    opened by lxy5513 5
  • RuntimeError: CUDA error: device-side assert triggered

    RuntimeError: CUDA error: device-side assert triggered

    I am a green hand of DL. When I run the code of volo with tlt in a single or multi GPU, I get an error as follows: /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:312: operator(): block: [0,0,0], thread: [25,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed. Traceback (most recent call last): File "main.py", line 949, in main() File "main.py", line 664, in main optimizers=optimizers) File "main.py", line 773, in train_one_epoch label_size=args.token_label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 90, in mixup_target y1 = get_labelmaps_with_coords(target, num_classes, on_value=on_value, off_value=off_value, device=device, label_size=label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 64, in get_labelmaps_with_coords num_classes=num_classes,device=device) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 16, in get_featuremaps _label_topk[1][:, :, :].long(), RuntimeError: CUDA error: device-side assert triggered.

    I can't fix this problem right now.

    opened by JIAOJIAYUASD 4
  • Generating label for custom dataset

    Generating label for custom dataset

    Hello,

    Thank you for sharing your work. I am currently trying to generate token label to a custom dataset for model lvvit_s, but I keep getting the loss close to 7 and the Accuracy 0 (not pre-trained and using 1 GPU in Google Colab). I also tried using the pre-trained model with --transfer but got 0 in both Loss and Acc . What option should I use for a custom dataset? image

    opened by AleMaiaF 2
  • generate_label.py unable to find model lvvit_s

    generate_label.py unable to find model lvvit_s

    Hi,

    When I tried to run the label generation script for the model lvvit_s it returned an error "RuntimeError: Unknown model".

    Solution: It worked when I added the line "import tlt.models" in the file generate_label.py.

    opened by AleMaiaF 2
  • Can Token labeling reach higher than annotator model?

    Can Token labeling reach higher than annotator model?

    Greetings,

    Thank you for this incredible research.

    I would like to know if it is possible to use Token Labeling to achieve scores higher than that of the annotator model, I believe this was the case with VOLO D5 model where it achieved higher score than NFNet, model used for annotation.

    opened by ErenBalatkan 1
  • label_map does not do the same augmentation (random crop) as the input image

    label_map does not do the same augmentation (random crop) as the input image

    Hi Thanks so much for the nice work! I am curious if you could share the insight on processing of the label_map. If I understand it correctly, after we load image and the corresponding, we shall do the same cropping/ flip/ resize, but in https://github.com/zihangJiang/TokenLabeling/blob/aa438eff9b9fc2daa8c8b4cc6bfaa6e3721f995e/tlt/data/label_transforms_factory.py#L58-L73 Seems only image was cropped, but the label map does not do the same cropping, which make the label map not match with the image?

    Shall we do

            return torchvision_F.resized_crop(
                    img, i, j, h, w, self.size, interpolation
            ), torchvision_F.resized_crop(
                    label_map, i / ratio, j / ratio, h / ratio, w / ratio, self.size, interpolation
            )
    

    Thanks

    opened by haooooooqi 1
  • Python3.6, ok; Python3.8, error

    Python3.6, ok; Python3.8, error

    Test: [ 0/1] Time: 11.293 (11.293) Loss: 0.7043 (0.7043) [email protected]: 42.1875 (42.1875) [email protected]: 100.0000 (100.0000) Test: [ 1/1] Time: 0.108 (5.701) Loss: 0.5847 (0.6689) [email protected]: 89.8148 (56.3187) [email protected]: 100.0000 (100.0000) free(): invalid pointer free(): invalid pointer Traceback (most recent call last): File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 303, in <module> main() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 294, in main raise subprocess.CalledProcessError(returncode=process.returncode, subprocess.CalledProcessError: Command '['/opt/conda/bin/python3.8', '-u', 'main.py', '--local_rank=1', './dataset/c/c', '--model', 'lvvit_s', '-b', '128', '--apex-amp', '--img-size', '224', '--drop-path', '0.1', '--token-label', '--token-label-size', '14', '--dense-weight', '0.0', '--num-classes', '2', '--finetune', './pretrained/lvvit_s-26M-384-84-4.pth.tar']' died with <Signals.SIGABRT: 6>. [email protected]:/puxin_libochao/TokenLabeling# CUDA_VISIBLE_DEVICES=0,1 bash ./distributed_train.sh 2 ./dataset/c/c --model lvvit_s -b 128 --apex-amp --img-size 224 --drop-path 0.1 --token-label --token-label-size 14 --dense-weight 0.0 --num-classes 2 --finetune ./pretrained/lvvit_s-26M-384-84-4.pth.tar

    opened by Williamlizl 1
  • A Bag of Training Techniques for ViT

    A Bag of Training Techniques for ViT

    Hi, thanks for your wonderful work. I have a question that whether training techniques mentioned in the LV-Vit can be used in other downstream task like object detection? In your paper, I see that many of this techniques are used in ImageNet. Thanks!

    opened by qdd1234 1
  • how to apply token labeling to CNN ?

    how to apply token labeling to CNN ?

    Hello ~ I'm interested in your token labeling technique, So I want to apply this technique in CNN based model because ViT is very heavy to train.

    can I get the your code with CNN token labeling? if you're not give me some detail for implementing

    thank you.

    opened by HoJ00n2 0
  • Model settings for Cifar10

    Model settings for Cifar10

    I am interested if there is any LV-ViT- model setup you have tested for Cifar10. I would like to know the proper setup of all blocks in none pretrained weights settings.

    opened by Aminullah6264 0
Owner
蒋子航
Now a Ph.D. student supervised by Prof. Feng Jiashi in ECE, NUS.
蒋子航
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022