Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

Overview

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes"

Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 framework A recurrent attention model sequentially observes glimpses from an image and predicts a class label. At time t, the model actively observes a glimpse gt and its coordinates lt. Given gt and lt, the feed-forward module F extracts features ft, and the recurrent module R updates a hidden state to ht. Using an updated hidden state ht, the linear classifier C predicts the class distribution p(y|ht). At time t+1, the model assesses various candidate locations l before attending an optimal one. It predicts p(y|g,l,ht) ahead of time and selects the candidate l that maximizes KL[p(y|g,l,ht)||p(y|ht)]. The model synthesizes the features of g using a Partial VAE to approximate p(y|g,l,ht) without attending to the glimpse g. The normalizing flow-based encoder S predicts the approximate posterior q(z|ht). The decoder D uses a sample z~q(z|ht) to synthesize a feature map f~ containing features of all glimpses. The model uses f~(l) as features of a glimpse at location l and evaluates p(y|g,l,ht)=p(y|f~(l),ht). Dashed arrows show a path to compute the lookahead class distribution p(y|f~(l),ht).

Requirements:

torch==1.8.1, torchvision==0.9.1, tensorboard==2.5.0, fire==0.4.0

Datasets:

Training a model

Use main.py to train and evaluate the model.

Arguments

  • dataset: one of 'svhn', 'cifar10', 'cifar100', 'cinic10', 'tinyimagenet'
  • datapath: path to the downloaded datasets
  • lr: learning rate
  • training_phase: one of 'first', 'second', 'third'
  • ccebal: coefficient for cross entropy loss
  • batch: batch-size for training
  • batchv: batch-size for evaluation
  • T: maximum time-step
  • logfolder: path to log directory
  • epochs: number of training epochs
  • pretrain_checkpoint: checkpoint for pretrained model from previous training phase

Example commands to train the model for SVHN dataset are as follows. Training Stage one

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='first' \
    --ccebal=1 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_first' \
    --epochs=1000 \
    --pretrain_checkpoint=None

Training Stage two

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='second' \
    --ccebal=0 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_second' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_first/weights_f_1000.pth'

Training Stage three

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='third' \
    --ccebal=16 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_third' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_second/weights_f_100.pth'

Visualization of attention policy for a CIFAR-10 image

example The top row shows the entire image and the EIG maps for t=1 to 6. The bottom row shows glimpses attended by our model. The model observes the first glimpse at a random location. Our model observes a glimpse of size 8x8. The glimpses overlap with the stride of 4, resulting in a 7x7 grid of glimpses. The EIG maps are of size 7x7 and are upsampled for the display. We display the entire image for reference; our model never observes the whole image.

Acknowledgement

Major parts of neural spline flows implementation are borrowed from Karpathy's pytorch-normalizing-flows.

Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022