An Implementation of Fully Convolutional Networks in Tensorflow.

Overview

Update

An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository.

tensorflow-fcn

This is a one file Tensorflow implementation of Fully Convolutional Networks in Tensorflow. The code can easily be integrated in your semantic segmentation pipeline. The network can be applied directly or finetuned to perform semantic segmentation using tensorflow training code.

Deconvolution Layers are initialized as bilinear upsampling. Conv and FCN layer weights using VGG weights. Numpy load is used to read VGG weights. No Caffe or Caffe-Tensorflow is required to run this. The .npy file for [VGG16] to be downloaded before using this needwork. You can find the file here: ftp://mi.eng.cam.ac.uk/pub/mttt2/models/vgg16.npy

No Pascal VOC finetuning was applied to the weights. The model is meant to be finetuned on your own data. The model can be applied to an image directly (see test_fcn32_vgg.py) but the result will be rather coarse.

Requirements

In addition to tensorflow the following packages are required:

numpy scipy pillow matplotlib

Those packages can be installed by running pip install -r requirements.txt or pip install numpy scipy pillow matplotlib.

Tensorflow 1.0rc

This code requires Tensorflow Version >= 1.0rc to run. If you want to use older Version you can try using commit bf9400c6303826e1c25bf09a3b032e51cef57e3b. This Commit has been tested using the pip version of 0.12, 0.11 and 0.10.

Tensorflow 1.0 comes with a large number of breaking api changes. If you are currently running an older tensorflow version, I would suggest creating a new virtualenv and install 1.0rc using:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp27-none-linux_x86_64.whl
pip install --upgrade $TF_BINARY_URL

Above commands will install the linux version with gpu support. For other versions follow the instructions here.

Usage

python test_fcn32_vgg.py to test the implementation.

Use this to build the VGG object for finetuning:

vgg = vgg16.Vgg16()
vgg.build(images, train=True, num_classes=num_classes, random_init_fc8=True)

The images is a tensor with shape [None, h, w, 3]. Where h and w can have arbitrary size.

Trick: the tensor can be a placeholder, a variable or even a constant.

Be aware, that num_classes influences the way score_fr (the original fc8 layer) is initialized. For finetuning I recommend using the option random_init_fc8=True.

Training

Example code for training can be found in the KittiSeg project repository.

Finetuning and training

For training build the graph using vgg.build(images, train=True, num_classes=num_classes) were images is q queue yielding image batches. Use a softmax_cross_entropy loss function on top of the output of vgg.up. An Implementation of the loss function can be found in loss.py.

To train the graph you need an input producer and a training script. Have a look at TensorVision to see how to build those.

I had success finetuning the network using Adam Optimizer with a learning rate of 1e-6.

Content

Currently the following Models are provided:

  • FCN32
  • FCN16
  • FCN8

Remark

The deconv layer of tensorflow allows to provide a shape. The crop layer of the original implementation is therefore not needed.

I have slightly altered the naming of the upscore layer.

Field of View

The receptive field (also known as or field of view) of the provided model is:

( ( ( ( ( 7 ) * 2 + 6 ) * 2 + 6 ) * 2 + 6 ) * 2 + 4 ) * 2 + 4 = 404

Predecessors

Weights were generated using Caffe to Tensorflow. The VGG implementation is based on tensorflow-vgg16 and numpy loading is based on tensorflow-vgg. You do not need any of the above cited code to run the model, not do you need caffe.

Install

Installing matplotlib from pip requires the following packages to be installed libpng-dev, libjpeg8-dev, libfreetype6-dev and pkg-config. On Debian, Linux Mint and Ubuntu Systems type:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev pkg-config
pip install -r requirements.txt

TODO

  • Provide finetuned FCN weights.
  • Provide general training code
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022