Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Overview

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO)

Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes"

[Project page] [Video] [Paper]

Installation

The code has been tested on Ubuntu 18.04, python 3.8.5 and CUDA 10.0. Please download following models:

If you use the temporal fitting code for PROX dataset, please install following packages:

Then run pip install -r requirements.txt to install other dependencies. It is noticed that different versions of smplx and VPoser might influece results.

Datasets

Trained Prior Models

The pretrained models are in the runs.

  • Motion smoothness prior: in runs/15217
  • Motion infilling prior: in runs/59547

The corresponding preprocessing stats are in the preprocess_stats

  • For motion smoothness prior: preprocess_stats/preprocess_stats_smooth_withHand_global_markers.npz
  • For motion infilling prior: preprocess_stats/preprocess_stats_infill_local_markers_4chan.npz

Motion Prior Training

Train the motion smoothness prior model with:

python train_smooth_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=global_markers

Train the motion infilling prior model with:

python train_infill_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan

Fitting on AMASS

Stage 1: per-frame fitting, utilize motion infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_perframe.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --save_dir=PATH/TO/SAVE/RESULUTS

Stage 2: temporal fitting, utilize motion smoothness and infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_tempt.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --perframe_res_dir=PATH/TO/PER/FRAME/RESULTS --save_dir=PATH/TO/SAVE/RESULTS

Make sure that start, end, step, dataset_name are consistent between per-frame and temporal fitting, and save_dir in per frame fitting and perframe_res_dir in temporal fitting are consistent.

Visualization of fitted results:

python vis_opt_amass.py --body_model_path=PATH/TO/SMPLX/MODELS --dataset_name=TotalCapture --start=0 --end=100 --step=20 --load_dir=PATH/TO/FITTED/RESULTS

Set --vis_option=static will visualize a motion sequence in static poses, and set --vis_option=animate will visualize a motion sequence as animations. The folders res_opt_amass_perframe and res_opt_amass_temp provide several fitted sequences of Stage 1 and 2, resp..

Fitting on PROX

Stage 1: per-frame fitting, utilize fitted params from PROX dataset directly

Stage 2: temporal consistent fitting: utilize motion smoothness prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S2.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Stage 3: occlusion robust fitting: utilize motion smoothness and infilling prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S3.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Visualization of fitted results:

cd temp_prox/
cd viz/
python viz_fitting.py --fitting_dir=/PATH/TO/FITTED/RESULTS --model_folder=/PATH/TO/SMPLX/MODELS --base_dir=/PATH/TO/PROX/DATASETS 

Fitted Results of PROX Dataset

The temporal fitting results on PROX can be downloaded here. It includes 2 file formats:

  • PROXD_temp: PROX format (consistent with original PROX dataset). Each frame fitting result is saved as a single file.
  • PROXD_temp_v2: AMASS format (similar with AMASS dataset). Fitting results of a sequence are saved as a single file.
  • convert_prox_format.py converts the data from PROXD_temp format to PROXD_temp_v2 format and visualizes the converetd format.

TODO

to update evaluation code

Citation

When using the code/figures/data/video/etc., please cite our work

@inproceedings{Zhang:ICCV:2021,
  title = {Learning Motion Priors for 4D Human Body Capture in 3D Scenes},
  author = {Zhang, Siwei and Zhang, Yan and Bogo, Federica and Pollefeys Marc and Tang, Siyu},
  booktitle = {International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021}
}

Acknowledgments

This work was supported by the Microsoft Mixed Reality & AI Zurich Lab PhD scholarship. We sincerely thank Shaofei Wang and Jiahao Wang for proofreading.

Relevant Projects

The temporal fitting code for PROX is largely based on the PROX dataset code. Many thanks to this wonderful repo.

HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023