Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

Related tags

Deep Learningresa
Overview

RESA

PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection".

Our paper has been accepted by AAAI2021.

Introduction

intro

  • RESA shifts sliced feature map recurrently in vertical and horizontal directions and enables each pixel to gather global information.
  • RESA achieves SOTA results on CULane and Tusimple Dataset.

Get started

  1. Clone the RESA repository

    git clone https://github.com/zjulearning/resa.git
    

    We call this directory as $RESA_ROOT

  2. Create a conda virtual environment and activate it (conda is optional)

    conda create -n resa python=3.8 -y
    conda activate resa
  3. Install dependencies

    # Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Or you can install via pip
    pip install torch torchvision
    
    # Install python packages
    pip install -r requirements.txt
  4. Data preparation

    Download CULane and Tusimple. Then extract them to $CULANEROOT and $TUSIMPLEROOT. Create link to data directory.

    cd $RESA_ROOT
    mkdir -p data
    ln -s $CULANEROOT data/CULane
    ln -s $TUSIMPLEROOT data/tusimple

    For CULane, you should have structure like this:

    $CULANEROOT/driver_xx_xxframe    # data folders x6
    $CULANEROOT/laneseg_label_w16    # lane segmentation labels
    $CULANEROOT/list                 # data lists
    

    For Tusimple, you should have structure like this:

    $TUSIMPLEROOT/clips # data folders
    $TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
    $TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
    $TUSIMPLEROOT/test_label.json # test label json file
    
    

    For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

    python scripts/generate_seg_tusimple.py --root $TUSIMPLEROOT
    # this will generate seg_label directory
  5. Install CULane evaluation tools.

    This tools requires OpenCV C++. Please follow here to install OpenCV C++. Or just install opencv with command sudo apt-get install libopencv-dev

    Then compile the evaluation tool of CULane.

    cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
    make
    cd -

    Note that, the default opencv version is 3. If you use opencv2, please modify the OPENCV_VERSION := 3 to OPENCV_VERSION := 2 in the Makefile.

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py c[configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

python main.py configs/tusimple.py --validate --load_from tusimple_resnet34.pth --gpus 0 1 2 3

We provide two trained ResNet models on CULane and Tusimple, downloading our best performed model (Tusimple: GoogleDrive/BaiduDrive(code:s5ii), CULane: GoogleDrive/BaiduDrive(code:rlwj) )

Citation

@misc{zheng2020resa,
      title={RESA: Recurrent Feature-Shift Aggregator for Lane Detection}, 
      author={Tu Zheng and Hao Fang and Yi Zhang and Wenjian Tang and Zheng Yang and Haifeng Liu and Deng Cai},
      year={2020},
      eprint={2008.13719},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022